P3-063 Activation in the working memory network in healthy aging, mild cognitive impairment and Alzheimer's disease

2004 ◽  
Vol 25 ◽  
pp. S369-S370
Author(s):  
Philip Scheltens ◽  
Serge A. Rombouts ◽  
Rutger Goekoop ◽  
Frederik Barkhof
2019 ◽  
Author(s):  
FR Farina ◽  
DD Emek-Savaş ◽  
L Rueda-Delgado ◽  
R Boyle ◽  
H Kiiski ◽  
...  

AbstractAlzheimer’s disease (AD) is a neurodegenerative disorder characterised by severe cognitive decline and loss of autonomy. AD is the leading cause of dementia. AD is preceded by mild cognitive impairment (MCI). By 2050, 68% of new dementia cases will occur in low- and middle-income countries. In the absence of objective biomarkers, psychological assessments are typically used to diagnose MCI and AD. However, these require specialist training and rely on subjective judgements. The need for low-cost, accessible and objective tools to aid AD and MCI diagnosis is therefore crucial. Electroencephalography (EEG) has potential as one such tool: it is relatively inexpensive (cf. magnetic resonance imaging; MRI) and is portable. In this study, we collected resting state EEG, structural MRI and rich neuropsychological data from older adults (55+ years) with AD, with MCI and from healthy controls (n~60 per group). Our goal was to evaluate the utility of EEG, relative to MRI, for the classification of MCI and AD. We also assessed the performance of combined EEG and behavioural (Mini-Mental State Examination; MMSE) and structural MRI classification models. Resting state EEG classified AD and HC participants with moderate accuracy (AROC=0.76), with lower accuracy when distinguishing MCI from HC participants (AROC=0.67). The addition of EEG data to MMSE scores had no additional value compared to MMSE alone. Structural MRI out-performed EEG (AD vs HC, AD vs MCI: AROCs=1.00; HC vs MCI: AROC=0.73). Resting state EEG does not appear to be a suitable tool for classifying AD. However, EEG classification accuracy was comparable to structural MRI when distinguishing MCI from healthy aging, although neither were sufficiently accurate to have clinical utility. This is the first direct comparison of EEG and MRI as classification tools in AD and MCI participants.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Anna-Mariya Kirova ◽  
Rebecca B. Bays ◽  
Sarita Lagalwar

Alzheimer’s disease (AD) is a progressive neurodegenerative disease marked by deficits in episodic memory, working memory (WM), and executive function. Examples of executive dysfunction in AD include poor selective and divided attention, failed inhibition of interfering stimuli, and poor manipulation skills. Although episodic deficits during disease progression have been widely studied and are the benchmark of a probable AD diagnosis, more recent research has investigated WM and executive function decline during mild cognitive impairment (MCI), also referred to as the preclinical stage of AD. MCI is a critical period during which cognitive restructuring and neuroplasticity such as compensation still occur; therefore, cognitive therapies could have a beneficial effect on decreasing the likelihood of AD progression during MCI. Monitoring performance on working memory and executive function tasks to track cognitive function may signal progression from normal cognition to MCI to AD. The present review tracks WM decline through normal aging, MCI, and AD to highlight the behavioral and neurological differences that distinguish these three stages in an effort to guide future research on MCI diagnosis, cognitive therapy, and AD prevention.


2004 ◽  
Vol 25 ◽  
pp. S13
Author(s):  
Frederik Barkhof ◽  
Serge A. Rombouts ◽  
Rutger Goekoop ◽  
Philip Scheltens

Sign in / Sign up

Export Citation Format

Share Document