Investigation of the influence of acidic and basic surface groups on carbon fibres on the interfacial shear strength in an epoxy matrix by means of single-fibre pull-out test

2001 ◽  
Vol 61 (4) ◽  
pp. 599-605 ◽  
Author(s):  
T Ramanathan ◽  
A Bismarck ◽  
E Schulz ◽  
K Subramanian
2002 ◽  
Vol 11 (1) ◽  
pp. 096369350201100 ◽  
Author(s):  
J. M. Caceres ◽  
A. N. Netravali

The paper discusses a simple specimen geometry to obtain the fibre/cement interfacial shear strength (IFSS). The specimens are easy to prepare and easy to test. The technique gives reliable and reproducible results. IFSS results for five different fibres with cement were measured. Most IFSS values obtained are in the range of 0.15 to 1.5 MPa. Despite the simplicity of the technique presented in this study, the results are in agreement with those obtained by several other researchers using different techniques and specimen geometry.


2015 ◽  
Vol 3 (7) ◽  
pp. 3360-3371 ◽  
Author(s):  
L. Servinis ◽  
L. C. Henderson ◽  
L. M. Andrighetto ◽  
M. G. Huson ◽  
T. R. Gengenbach ◽  
...  

An in situ diazonium grafting methodology was used to decorate the surface of carbon fibres with pendant amines. This methodology was shown to greatly affect IFSS in single fibre composites.


2019 ◽  
Vol 86 (7) ◽  
Author(s):  
Qiyang Li ◽  
Guodong Nian ◽  
Weiming Tao ◽  
Shaoxing Qu

Microbond tests have been widely used for studying the interfacial mechanical properties of fiber-reinforced composites. However, experimental results reveal that the interfacial shear strength (IFSS) depends on the length of microdroplet-embedded fiber (le). Thus, it is essential to provide an insight into this size effect on IFSS. In this paper, microbond tests are conducted for two kinds of widely used composites, i.e., glass fiber/epoxy matrix and carbon fiber/epoxy matrix. The lengths of microdroplet-embedded glass fiber and carbon fiber are in the ranges from 114.29 µm to 557.14 µm and from 63.78 µm to 157.45 µm, respectively. We analyze the representative force–displacement curves, the processes of interfacial failure and frictional sliding, and the maximum force and the frictional force as functions of le. Experimental results show that IFSS of both material systems monotonically decreases with le and then approaches a constant value. The finite element model is used to analyze the size effect on IFSS and interfacial failure behaviors. For both material systems, IFSS predicted from simulations is consistent with that obtained from experiments. Moreover, by analyzing the shear stress distribution, a transition of interface debonding is found from more or less uniform separation to crack propagation when le increases. This study reveals the mechanism of size effect in microbond tests, serving as an effective method to evaluate the experimental results and is critical to guidelines for the design and optimization of advanced composites.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Guizhong Xu ◽  
Ji Chen ◽  
Shenjie Shi ◽  
Angran Tian ◽  
Qiang Tang

The further development of land reclamation, port waterway, and wharf construction brings about proper treatments of dredger fill silt, while huge amounts of rice straw set aside in China argument rational disposal every year. Therefore, rice straw is bundled up as ropes, which represent as drainage body and reinforcement, to make eco-friendly treatment for dredger fill silt. This paper investigates the mechanical properties and validity of rice straw rope as certain treating material of dredger fill silt through a series of pull-out test, mass loss test, and tension test on specimens with different water contents and dry densities. The results reveal that peak value of interfacial shear strength rises with the increase of normal stress at the same immersion time, and in particular, it rises by up to 250.0% when the normal stress is 40 kPa. The tensile force of rice straw rope increases slowly with the rise of tensile displacement, and the failure mode changes from brittle to ductile with the rise of immersion time, which witnesses first rapid back slow degradation trend. The proper interfacial shear strength, tensile force, and reasonable degradation rate of rice straw rope make it ideal in drainage and consolidation of dredger fill silt.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2406
Author(s):  
Serge Zhandarov ◽  
Edith Mäder ◽  
Uwe Gohs

One of the most popular micromechanical techniques of determining the local interfacial shear strength (local IFSS, τd) between a fiber and a matrix is the single fiber pull-out test. The τd values are calculated from the characteristic forces determined from the experimental force–displacement curves using a model which relates their values to local interfacial strength parameters. Traditionally, the local IFSS is estimated from the debond force, Fd, which corresponds to the crack initiation and manifests itself by a “kink” in the force–displacement curve. However, for some specimens the kink point is hardly discernible, and the “alternative” method based on the post-debonding force, Fb, and the maximum force reached in the test, Fmax, has been proposed. Since the experimental force–displacement curve includes three characteristic points in which the relationship between the current values of the applied load and the crack length is reliably established, and, at the same time, it is fully determined by only two interfacial parameters, τd and the interfacial frictional stress, τf, several methods for the determination of τd and τf can be proposed. In this paper, we analyzed several theoretical and experimental force–displacement curves for different fiber-reinforced materials (thermoset, thermoplastic and concrete) and compared all seven possible methods of τd and τf calculation. It was shown that the “alternative” method was the most accurate and reliable one, while the traditional approach often yielded the worst results. Therefore, we proposed that the “alternative” method should be preferred for the experimental force–displacement curves analysis.


Sign in / Sign up

Export Citation Format

Share Document