scholarly journals A Special Single-Fibre Pull-Out Technique for Determining the Fiber/Cement Interfacial Bond Strength

2002 ◽  
Vol 11 (1) ◽  
pp. 096369350201100 ◽  
Author(s):  
J. M. Caceres ◽  
A. N. Netravali

The paper discusses a simple specimen geometry to obtain the fibre/cement interfacial shear strength (IFSS). The specimens are easy to prepare and easy to test. The technique gives reliable and reproducible results. IFSS results for five different fibres with cement were measured. Most IFSS values obtained are in the range of 0.15 to 1.5 MPa. Despite the simplicity of the technique presented in this study, the results are in agreement with those obtained by several other researchers using different techniques and specimen geometry.

2002 ◽  
Vol 11 (5) ◽  
pp. 096369350201100 ◽  
Author(s):  
J A Etches ◽  
G F Fernando

This paper reports on the development of a prepreg-based fabrication technique to manufacture single fibre pull-out test specimens for conducting interfacial bond strength studies. Optical fibres were embedded in 2 and 16-ply unidirectional glass fibre prepreg and processed in an autoclave using conventional procedures. Fibre pull-out tests were conducted on these specimens and the data obtained are comparable to those reported in the literature.


2012 ◽  
Vol 517 ◽  
pp. 932-938 ◽  
Author(s):  
Zhi Fang ◽  
Hong Qiao Zhang

There exist the problems such as low bond strength and bad durability in the ordinary grouting slurry of the ground anchor system at present. The high-performance grouting mediums RPC (Reactive Powder Concrete) and DSP (Densified Systems containing homogeneously arranged ultrafine Particles) would become the potential replacement of grouting medium in ground anchor resulting from their high compressive strength, durability and toughness. Based on a series of pull-out tests on ground anchors with different high-performance grouting medium of RPC and DSP , different bond length in the construction field, the bond performance on the interfaces between anchor bolt (deformed steel bar) and grouted medium as well as between grouted medium and rock mass was studied. The results indicate that the interfacial bond strength between RPC or DSP and deformed steel bolt ranges within 23-31Mpa, far greater than that (about 2-3MPa) between the ordinary cementitious grout and deformed steel bar. Even though the interfacial bond strength between the grouted medium and rock mass of limestone was not obtained in the test since the failure mode was pull-out of those steel bar rather than the interface shear failure between grouted medium and rock mass, the bond stress on the interface reached 6.2-8.38 MPa, also far greater than the bond strength (about 0.1-3MPa) between the ordinary cementitious slurry and rocks.


2017 ◽  
Vol 726 ◽  
pp. 8-12
Author(s):  
De Long Ma ◽  
Yi Wang Bao

Interfacial bond strength is one of the vital mechanical properties of adhesives. The cross-bonded method, which is widely used to measure the interfacial tensile and shear bond strength simultaneously, has attracted extensive attention. An improved cross-bonded method is presented in this study in order to promote the accuracy and reliability of the testing results. The ergo 9900 glue, E-7 glue, AB glue and 502 glue were measured in this study. Compared with the original method, the results of the improved cross-bonded method show that: (i) the coefficient of variation of the interfacial bond strength decreased significantly; (ii) the interfacial shear bond strength of the adhesives is closer to its true value.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Guizhong Xu ◽  
Ji Chen ◽  
Shenjie Shi ◽  
Angran Tian ◽  
Qiang Tang

The further development of land reclamation, port waterway, and wharf construction brings about proper treatments of dredger fill silt, while huge amounts of rice straw set aside in China argument rational disposal every year. Therefore, rice straw is bundled up as ropes, which represent as drainage body and reinforcement, to make eco-friendly treatment for dredger fill silt. This paper investigates the mechanical properties and validity of rice straw rope as certain treating material of dredger fill silt through a series of pull-out test, mass loss test, and tension test on specimens with different water contents and dry densities. The results reveal that peak value of interfacial shear strength rises with the increase of normal stress at the same immersion time, and in particular, it rises by up to 250.0% when the normal stress is 40 kPa. The tensile force of rice straw rope increases slowly with the rise of tensile displacement, and the failure mode changes from brittle to ductile with the rise of immersion time, which witnesses first rapid back slow degradation trend. The proper interfacial shear strength, tensile force, and reasonable degradation rate of rice straw rope make it ideal in drainage and consolidation of dredger fill silt.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2406
Author(s):  
Serge Zhandarov ◽  
Edith Mäder ◽  
Uwe Gohs

One of the most popular micromechanical techniques of determining the local interfacial shear strength (local IFSS, τd) between a fiber and a matrix is the single fiber pull-out test. The τd values are calculated from the characteristic forces determined from the experimental force–displacement curves using a model which relates their values to local interfacial strength parameters. Traditionally, the local IFSS is estimated from the debond force, Fd, which corresponds to the crack initiation and manifests itself by a “kink” in the force–displacement curve. However, for some specimens the kink point is hardly discernible, and the “alternative” method based on the post-debonding force, Fb, and the maximum force reached in the test, Fmax, has been proposed. Since the experimental force–displacement curve includes three characteristic points in which the relationship between the current values of the applied load and the crack length is reliably established, and, at the same time, it is fully determined by only two interfacial parameters, τd and the interfacial frictional stress, τf, several methods for the determination of τd and τf can be proposed. In this paper, we analyzed several theoretical and experimental force–displacement curves for different fiber-reinforced materials (thermoset, thermoplastic and concrete) and compared all seven possible methods of τd and τf calculation. It was shown that the “alternative” method was the most accurate and reliable one, while the traditional approach often yielded the worst results. Therefore, we proposed that the “alternative” method should be preferred for the experimental force–displacement curves analysis.


Sign in / Sign up

Export Citation Format

Share Document