Particle size distribution in an efluent from an advanced primary treatment and its removal during filtration

1997 ◽  
Vol 36 (4) ◽  
1997 ◽  
Vol 36 (4) ◽  
pp. 159-165 ◽  
Author(s):  
H. Landa ◽  
A. Capella ◽  
B. Jiménez

The filtration efficiency of an Advanced Primary Treatment System (APT) was analyzed in terms of suspended solids concentration, particle size distribution and helminth eggs counts. A study was carried out on three one-metre deep sand filters with a specific size (ES) of 0.6, 0.8 and 1.2 mm. More than 50 runs were done with operating rate of 7, 10, 12 and 15 m/h. Basic design-related information was obtained for the APT system. A filter with a 1.2 mm ES provided the best effluent, with 0.1 Helminth egg/L. The average suspended solid concentration in the effluent was 39 mg/L. The most recommendable filtration rate was 10 m/h with a run time of 33 h. A study of the particle distribution was made for each step of the process based on size.


2006 ◽  
Vol 53 (7) ◽  
pp. 43-49 ◽  
Author(s):  
A. Chavez ◽  
C. Maya ◽  
B. Jimenez

Total suspended solids is a parameter commonly used to operate and design coagulation–flocculation processes. Nevertheless, their application for an advanced primary treatment (a high performance but low dose demand coagulation processes coupled with a high rate sedimentator, sometimes called enhanced primary treatment) is not the best option to produce an effluent for agricultural irrigation. This paper compares the best operating conditions obtained using the TSS or the PSD (particle size distribution) as parameters to follow the efficiency. The treatment objective was to remove particles >20 μm, in such conditions that the effluent can contain organic matter and nutrients necessary for crops with a reduced number of helminth ova (with sizes between 20 to 80 μm). Using the TSS as parameter, the best coagulation (460 s−1, 60 s contact time and 300 μmolAl/L) and flocculation (20 s−1 with 15 min) conditions produced an effluent with 1.2 HO/L. To obtain a similar results but using operating conditions determined with the PSD at a three times lower coagulant dose can be employed (diminishing operating costs and reducing the quantity of sludge produced), and a reduction on energy consumption of around eight times can be reached. Best operating conditions defined using the PSD (160 s−1, 60 s contact time and 100 μmolAl/L) produced an effluent with <0.4 HO/L.


2020 ◽  
Vol 69 (4) ◽  
pp. 102-106
Author(s):  
Shota Ohki ◽  
Shingo Mineta ◽  
Mamoru Mizunuma ◽  
Soichi Oka ◽  
Masayuki Tsuda

1995 ◽  
Vol 5 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Christine M. Woodall ◽  
James E. Peters ◽  
Richard O. Buckius

1998 ◽  
Vol 84 (5) ◽  
pp. 387-392 ◽  
Author(s):  
Takashi INOUE ◽  
Yuzo HOSOI ◽  
Koe NAKAJIMA ◽  
Hiroyuki TAKENAKA ◽  
Tomonori HANYUDA

Sign in / Sign up

Export Citation Format

Share Document