Control of filamentous bulking and interactions among sulfur oxidation-reduction and iron oxidation-reduction in activated sludge using an iron coagulant

1998 ◽  
Vol 38 (8-9) ◽  
1998 ◽  
Vol 38 (8-9) ◽  
pp. 9-17 ◽  
Author(s):  
Ryoko Yamamoto-Ikemoto ◽  
Saburo Matsui ◽  
Tomoaki Komori ◽  
Edja Kofi Bosque-Hamilton

The effect of iron coagulant on control of filamentous bulking and phosphate removal was investigated using a laboratory scale activated sludge process. Sulfate reduction was correlated to activated sludge bulking. When FeCl2 was added to the aeration tank, most of the phosphate was removed. Sulfate reduction and filamentous bulking were also suppressed. The addition of FeCl2 was also effective in suppressing phosphate release and sulfide production from wasted sludge. Interactions among sulfur oxidation-reduction and iron oxidation-reduction were examined in the batch experiments. When FeCl2 was added, iron reducing bacteria outcompeted sulfate reducing bacteria and iron oxidizing bacteria grew predominantly.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 55-60 ◽  
Author(s):  
R. Yamamoto-Ikemoto ◽  
T. Komori ◽  
S. Matsui

Iron oxidation and reduction were examined using the activated sludge from a municipal plant. Iron contents of the activated sludge were 1–2%. Iron oxidation rates were correlated with the initial iron concentrations. Iron reducing rates could be described by the Monod equation. The effects of iron reducing bacteria on sulfate reduction, denitrification and poly-P accumulation were examined. Iron reduction suppressed sulfate reduction by competing with hydrogen produced from protein. Denitrification was outcompeted with iron reduction and sulfate reduction. These phenomena could be explained thermodynamically. Poly-P accumulation was also suppressed by denitrification. The activity of iron reduction was relatively high.


1980 ◽  
Vol 15 (1) ◽  
pp. 73-82 ◽  
Author(s):  
J.G. Henry ◽  
E.E. Salenieks

Abstract This study examined the effect of temperature on the settleabi1ity of activated sludge at various organic loading rates. Five completely mixed, bench-scale, activated sludge plants, operating under similar conditions at 5, 10 and 19°C, were continuously fed diluted, settled sewage supplemented with carbohydrate (sucrose). Hydraulic loading rates, MLSS and pH were maintained at constant levels during the experiments to eliminate these factors are variables. Dissolved oxygen was kept in excess of 3 mg/1 so that it would not be a limiting factor. Sludge Volume Indices (SVI ) and zone settling velocities were used to indicate changes in sludge settleability. Microscopic examination of the activated sludge indicated significant differences in the morphological features of filamentous microorganisms present at the two temperature extremes. At 19°C, the predominant forms were characterized by long curving trichomes, occasionally falsely branching, containing short cylindrical cells. At 5 °C, much smaller straight filaments, composed of long, narrow, rod-shaped cells appeared to be the principal microorganisms responsible for bulking. Various other filamentous forms were always present at each of the temperatures studied. Stirred sludge settling tests of moderately bulking sludges generally exhibited much higher settling velocities and lower SVI's than unstirred bulking samples. However, extremely filamentous bulking sludge exhibited comparable stirred and unstirred settling velocity and SVI values. The standard SVI test was found to be an inadequate indicator of the extent of bulking when trying to correlate the SVI failures from bench-scale performance with the results from continuous units. Lower temperature had no appreciable effect on COD removal efficiency as long as bulking did not cause a loss of solids in the effluent. However, results suggested that less than half the organic load could be accepted at 5°C, that could be handled at 19°C, before filamentous bulking occurred. A plot of loading versus temperature for various SVI's provided a visual indication of the safe loading limit below which bulking was unlikely to occur. The study clearly demonstrated that temperature can have a significant effect on sludge settleability.


1997 ◽  
Vol 36 (2-3) ◽  
pp. 1-8 ◽  
Author(s):  
P. Grau ◽  
B. P. Da-Rin

An unusually severe case of toxicity accompanied by activated sludge filamentous bulking was observed at the wastewater treatment plant Sao Paulo-Barueri. Treatment efficiency of the plant, operated without major problems for more than five years before, was significantly hindered for almost six months. Occurrence of toxic shocks was confirmed partly directly but mostly indirectly by inhibition of nitrification and biological phenomena related to toxicity. Several measures adopted, including the recycled activated sludge chlorination, are described in the paper.


1999 ◽  
Vol 40 (11-12) ◽  
pp. 223-229 ◽  
Author(s):  
Frédéric Clauss ◽  
Christel Balavoine ◽  
Delphine Hélaine ◽  
Gaëtan Martin

Forest industry wastewaters are difficult to clean: hydraulic and organic load variations, filamentous bulking or pin-point flocs negatively impact depollution processes. The addition of a fine, mineral, talc-based powder, Aquatal, into the aeration tanks of wastewater treatment plants connected to pulp and paper factories has been successfully tested since end of '97. The first case-study presents full results obtained over a period of 18 months in a 20,000 p.e. plant connected to a paper factory. The mineral powder was regularly added to control sludge volume index, thereby ensuring low suspended solids concentration in the outfluent. Plant operators could easily adapt biomass concentration to match organic load variation, thereby maintaining pollution micro-organisms ratio constant. In a second case study, a trouble-shooting strategy was implemented to counteract filamentous bulking. A one-off, large dosage enabled the plant operator to deal effectively with poor settleability sludge and rapidly control sludge blanket expansion. In both cases, the main common characteristics observed were an increase in floc aggregation and the production of heavier and well-structured flocs. The sludge settling velocity increased and an efficient solid/liquid separation was obtained. After a few days, the mineral particles of Aquatal were progressively integrated into the sludge floc structure. When the mineral powder was added to the activated sludge in the aeration basin, chemical interactions frequently encountered with other wastewater treatment additives did not pose a problem. Moreover, with this mineral additive, the biological excess sludge displayed good thickening properties and dewatering was improved. Despite the addition of the insoluble mineral particles, the amount of wet sludge expelled did not increase. Aquatal offers a rapid solution to floc settleability problems which so frequently arise when physical or biological disorders appear in forest industry wastewater treatment plants.


2002 ◽  
Vol 87 (7) ◽  
pp. 829-837 ◽  
Author(s):  
Fabrice Gaillard ◽  
Bruno Scaillet ◽  
Michel Pichavant

2015 ◽  
Vol 73 (4) ◽  
pp. 740-745 ◽  
Author(s):  
Jan Dries

On-line control of the biological treatment process is an innovative tool to cope with variable concentrations of chemical oxygen demand and nutrients in industrial wastewater. In the present study we implemented a simple dynamic control strategy for nutrient-removal in a sequencing batch reactor (SBR) treating variable tank truck cleaning wastewater. The control system was based on derived signals from two low-cost and robust sensors that are very common in activated sludge plants, i.e. oxidation reduction potential (ORP) and dissolved oxygen. The amount of wastewater fed during anoxic filling phases, and the number of filling phases in the SBR cycle, were determined by the appearance of the ‘nitrate knee’ in the profile of the ORP. The phase length of the subsequent aerobic phases was controlled by the oxygen uptake rate measured online in the reactor. As a result, the sludge loading rate (F/M ratio), the volume exchange rate and the SBR cycle length adapted dynamically to the activity of the activated sludge and the actual characteristics of the wastewater, without affecting the final effluent quality.


2006 ◽  
Vol 16 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Ilse Y. Smets ◽  
Ephraim N. Banadda ◽  
Jeroen Deurinck ◽  
Nele Renders ◽  
Rika Jenné ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document