Chapter 3 Increasing the Efficiency of Very Large Scale Packed Bed Chromatographic Separations

Author(s):  
Phillip C. Wankat
2017 ◽  
Vol 156 ◽  
pp. 156-170 ◽  
Author(s):  
V. Spallina ◽  
B. Marinello ◽  
F. Gallucci ◽  
M.C. Romano ◽  
M. Van Sint Annaland

2019 ◽  
Vol 9 (12) ◽  
pp. 2569
Author(s):  
Philipp Knödler

Thermal energy storage (TES) systems are central elements for various types of new power plant concepts, whereat packed beds represent a promising storage inventory option. Due to thermal expansion and shrinking of the packed bed’s particles during cyclic thermal charging and discharging operation, high technical risks arise, and possibly lead to material failure. In order to accurately design the heat storage system, suitable tools for calculating induced forces and stresses are mandatory. Continuum models offer time efficient simulation results, but are in need of effective packed bed parameters. This paper introduces a methodology for applying a simplified continuum model and presents first results for an exemplarily large-scale application.


Author(s):  
Shobhana Singh ◽  
Kim Sørensen

Abstract In the present paper, a high-temperature packed bed energy storage system of volume 175,000m3 is numerically investigated. The system is a underground packed bed of truncated conical shape, which comprises of rocks as a storage medium and air as a heat transfer fluid. A one-dimensional, two-phase model is developed to simulate the transient behavior of the storage. The developed model is used to conduct a parametric study with a wide range of design parameters to investigate the change in performance during both charging and discharging operation. Results show that the model satisfactorily predicts the dynamic behavior, and the truncated conical shaped storage with a rock diameter of 3cm, insulation thickness up to 0.6m and charging-discharging rate of 553kg/s leads to lower thermal losses and higher energy efficiencies. The paper provides useful insight into the transient performance and efficiency of a large-scale packed bed energy storage system within the range of parameters investigated.


2015 ◽  
Vol 36 ◽  
pp. 34-50 ◽  
Author(s):  
V. Spallina ◽  
P. Chiesa ◽  
E. Martelli ◽  
F. Gallucci ◽  
M.C. Romano ◽  
...  

Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 780
Author(s):  
Jürgen Beck ◽  
William Heymann ◽  
Eric von Lieres ◽  
Rainer Hahn

Chromatography equipment includes hold-up volumes that are external to the packed bed and usually not considered in the development of chromatography models. These volumes can substantially contribute to band-broadening in the system and deteriorate the predicted performance. We selected a bubble trap of a pilot scale chromatography system as an example for a hold-up volume with a non-standard mixing behavior. In a worst-case scenario, the bubble trap is not properly flushed before elution, thus causing the significant band-broadening of the elution peak. We showed that the mixing of buffers with different densities in the bubble trap device can be accurately modeled using a simple compartment model. The model was calibrated at a wide range of flow rates and salt concentrations. The simulations were performed using the open-source software CADET, and all scripts and data are published with this manuscript. The results illustrate the importance of including external holdup volumes in chromatography modeling. The band-broadening effect of tubing, pumps, valves, detectors, frits, or any other zones with non-standard mixing behavior can be considered in very similar ways.


Sign in / Sign up

Export Citation Format

Share Document