Strong squeezing flow between parallel plates leads to rolling motion at the contact line

2002 ◽  
Vol 28 (6) ◽  
pp. 911-925 ◽  
Author(s):  
S.N. Reznik ◽  
A.L. Yarin
1977 ◽  
Vol 79 (2) ◽  
pp. 209-229 ◽  
Author(s):  
L. M. Hocking

If the no-slip condition is used to determine the flow produced when a fluid interface moves along a solid boundary, a non-integrable stress is obtained. In part 1 of this study (Hocking 1976), it was argued that, when allowance was made for the presence of irregularities on the solid boundary, an effective slip coefficient could be found, which might remove the difficulty.This paper examines the effect of a slip coefficient on the flow in the neighbourhood of the contact line. Particular cases which are solved in detail are liquid–gas interfaces at an arbitrary angle, and normal contact of fluids of arbitrary viscosity. The contribution of the vicinity of the contact line to the force on the boundary is obtained.The inner region, near the contact line, must be matched with an outer flow, in which the no-slip condition can be applied, in order to obtain the total value of the force on the boundary. This force is determined for the flow of two fluids between parallel plates and in a pipe, with a plane interface. The enhanced resistance produced by the presence of the interface is calculated, and it is shown to be equivalent to an increase in the length of the column of fluid by a small multiple of the pipe radius.


2019 ◽  
Vol 30 (5) ◽  
pp. 2563-2581 ◽  
Author(s):  
Seyedmohammad Mousavisani ◽  
Javad Khalesi ◽  
Hossein Golbaharan ◽  
Mohammad Sepehr ◽  
D.D. Ganji

Purpose The purpose of this paper is to find the approximate solutions of unsteady squeezing nanofluid flow and heat transfer between two parallel plates in the presence of variable heat source, viscous dissipation and inclined magnetic field using collocation method (CM). Design/methodology/approach The partial governing equations are reduced to nonlinear ordinary differential equations by using appropriate transformations and then are solved analytically by using the CM. Findings It is observed that the enhancing values of aligned angle of the magnetic causes a reduction in temperature distribution. It is also seen that the effect of nanoparticle volume fraction is significant on the temperature but negligible on the velocity profile. Originality/value To the best of the authors’ knowledge, no research has been carried out considering the combined effects of inclined Lorentz forces and variable heat source on squeezing flow and heat transfer of nanofluid between the infinite parallel plates.


2019 ◽  
Vol 393 ◽  
pp. 121-137 ◽  
Author(s):  
S.R. Mishra ◽  
Debi P. Bhatta ◽  
J.K. Dash ◽  
Oluwole Daniel Makinde

Study reveals the axisymmetric squeezing flow of nanofluids through two parallel plates. Both Copper (Cu) and Silver (Ag) nanoparticles along with water treated as base fluid have been taken into consideration. Viscous dissipation effect and velocity slip both enhance the present study. The non-dimensional form of governing nonlinear ODEs is obtained with the suitable choice of similarity transformation. The complex ODEs are solved analytically imposing Adomain Decomposition Method (ADM). The influence of emerging parameters such as nanoparticle volume fraction, unsteadiness parameter, Eckert number, etc. have been described by visualizing graphically and the tabular values represent the unknown coefficient and computation is made for various values of physical parameters. The present result is compatible with the earlier which confirms the accuracy of the solution procedure. It reveals that point of inflection is marked in the velocity profiles of both Ag and Cu water nanofluids for the effects of various physical parameters. Squeezing number play a vital role in the velocity profile and it is observed that near the lower plate Ag nanoparticle dominates over Cu nanoparticles and further, after the middle of the channel the effect is reversed. 2010 Mathematics Subject Classification: 76D05, 76D10, 76M60, 76S05. *Corresponding Author’s Email: HYPERLINK "mailto:[email protected]" [email protected] Mobile No.: (+91)-9937169245


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Inayat Ullah ◽  
M. T. Rahim ◽  
Hamid Khan ◽  
Mubashir Qayyum

The aim of this paper is to compare the efficiency of various techniques for squeezing flow of an incompressible viscous fluid in a porous medium under the influence of a uniform magnetic field squeezed between two large parallel plates having slip boundary. Fourth-order nonlinear ordinary differential equation is obtained by transforming the Navier-Stokes equations. Resulting boundary value problem is solved using Differential Transform Method (DTM), Daftardar Jafari Method (DJM), Adomian Decomposition Method (ADM), Homotopy Perturbation Method (HPM), and Optimal Homotopy Asymptotic Method (OHAM). The problem is also solved numerically using Mathematica solver NDSolve. The residuals of the problem are used to compare and analyze the efficiency and consistency of the abovementioned schemes.


2016 ◽  
Vol 55 (2) ◽  
pp. 1177-1186 ◽  
Author(s):  
Nilankush Acharya ◽  
Kalidas Das ◽  
Prabir Kumar Kundu

2019 ◽  
Vol 3(2019) (1) ◽  
pp. 59-73 ◽  
Author(s):  
Gbeminiyi Sobamowo ◽  
◽  
Lawrence Jayesimi ◽  
David Oke ◽  
Ahmed Yinusa ◽  
...  

Heat Transfer ◽  
2021 ◽  
Author(s):  
A. M. Jyothi ◽  
R. S. Varun Kumar ◽  
J. K. Madhukesh ◽  
B. C. Prasannakumara ◽  
G. K. Ramesh

Sign in / Sign up

Export Citation Format

Share Document