Involvement of Bcl-2 family proteins in germ cell apoptosis during testicular development in the rat and pro-survival effect of stem cell factor on germ cells in vitro

2000 ◽  
Vol 165 (1-2) ◽  
pp. 115-129 ◽  
Author(s):  
W Yan
2000 ◽  
Vol 113 (1) ◽  
pp. 161-168 ◽  
Author(s):  
W. Yan ◽  
J. Suominen ◽  
J. Toppari

Stem cell factor (SCF) plays an important role in migration, adhesion, proliferation, and survival of primordial germ cells and spermatogonia during testicular development. However, the function of SCF in the adult testis is poorly described. We have previously shown that, in the presence of SCF, there were more type A spermatogonia incorporating thymidine at stage XII of rat seminiferous tubules cultured in vitro than in the absence of SCF, implying that the increased DNA synthesis might result from enhanced survival of spermatogonia. To explore the potential pro-survival function of SCF during spermatogenesis, the seminiferous tubules from stage XII were cultured in the presence or absence of SCF (100 ng/ml) for 8, 24, 48, and 72 hours, respectively, and apoptosis was analyzed by DNA laddering and in situ 3′-end labeling (ISEL) staining. Surprisingly, not only spermatogonia, but also spermatocytes and spermatids, were protected from apoptosis in the presence of SCF. Apoptosis took place much later and was less severe in the SCF-treated tubules than in the controls. Based on previous studies showing that FSH prevents germ cells from undergoing apoptosis in vitro, and that SCF level is increased dramatically in response to FSH stimulation, we also tested if the pro-survival effect of FSH is mediated through SCF by using a function-blocking monoclonal antibody, ACK-2, to block SCF/c-kit interaction. After 24 hours of blockade, the protective effect of FSH was partially abolished, as manifested by DNA laddering and ISEL analyses. The present study demonstrates that SCF acts as an important survival factor for germ cells in the adult rat testis and FSH pro-survival effect on germ cells is mediated partially through the SCF/c-kit pathway.


Zygote ◽  
1998 ◽  
Vol 6 (3) ◽  
pp. 271-275 ◽  
Author(s):  
Gabriela Durcova-Hills ◽  
Katja Prelle ◽  
Sigrid Müller ◽  
Miodrag Stojkovic ◽  
Jan Motlik ◽  
...  

We studied the effect of murine leukaemia inhibitory factor (LIF), human basic fibroblast growth factor (bFGF) and porcine stem cell factor (SCF) on the survival and/or proliferation of porcine primordial germ cells (PGCs) obtained from 27-day-old embryos in vitro. PGCs were cultured in embryonic stem cell (ESC) medium supplemented with or without either LIF (1000 IU/ml) alone or LIF together with bFGF (10 ng/ml). They were seeded on mitotically inactivated feeder cells, either STO or transfected STO cells (STO#8), expressing the membrane-bound form of porcine SCF. PGCs were identified by their alkaline phosphatase (AP) activity and counted after 1, 3 and 5 days in culture. After 1 day of culture, PGCs cultured on STO#8 cells showed significantly higher survival than PGCs cultured on STO cells (p < 0.05). The combined effect of SCF and LIF caused a significant increase in PGC number by day 3 of culture when PGCs were cultured on either STO cells (p < 0.01) or STO#8 (p < 0.001). When SCF and LIF were used together with bFGF no increase in the PGC number was observed. Our results suggest that the membrane-bound form of porcine SCF plays a pivotal role in the primary culture of porcine PGCs and that bFGF is not required in vitro.


2003 ◽  
Vol 17 (9) ◽  
pp. 1868-1879 ◽  
Author(s):  
Wei Yan ◽  
Jun-Xing Huang ◽  
Anna-Stina Lax ◽  
Lauri Pelliniemi ◽  
Eeva Salminen ◽  
...  

Abstract To explore physiological roles of BCL-W, a prosurvival member of the BCL-2 protein family, we generated transgenic (TG) mice overexpressing Bcl-w driven by a chicken β-actin promoter. Male Bcl-w TG mice developed normally but were infertile. The adult TG testes displayed disrupted spermatogenesis with various severities ranging from thin seminiferous epithelium containing less germ cells to Sertoli cell-only appearance. No overpopulation of any type of germ cells was observed during testicular development. In contrast, the developing TG testes displayed decreased number of spermatogonia, degeneration, and detachment of spermatocytes and Sertoli cell vacuolization. The proliferative activity of germ cells was significantly reduced during testicular development and spermatogenesis, as determined by in vivo and in vitro 5′-bromo-2′deoxyuridine incorporation assays. Sertoli cells were structurally and functionally normal. The degenerating germ cells were TUNEL-negative and no typical apoptotic DNA ladder was detected. Our data suggest that regulated spatial and temporal expression of BCL-W is required for normal testicular development and spermatogenesis, and overexpression of BCL-W inhibits germ cell cycle entry and/or cell cycle progression leading to disrupted spermatogenesis.


Reproduction ◽  
2010 ◽  
Vol 140 (5) ◽  
pp. 733-742 ◽  
Author(s):  
S Albert ◽  
J Ehmcke ◽  
J Wistuba ◽  
K Eildermann ◽  
R Behr ◽  
...  

The seminiferous epithelium in the nonhuman primate Callithrix jacchus is similarly organized to man. This monkey has therefore been used as a preclinical model for spermatogenesis and testicular stem cell physiology. However, little is known about the developmental dynamics of germ cells in the postnatal primate testis. In this study, we analyzed testes of newborn, 8-week-old, and adult marmosets employing immunohistochemistry using pluripotent stem cell and germ cell markers DDX4 (VASA), POU5F1 (OCT3/4), and TFAP2C (AP-2γ). Stereological and morphometric techniques were applied for quantitative analysis of germ cell populations and testicular histological changes. Quantitative RT-PCR (qRT-PCR) of testicular mRNA was applied using 16 marker genes establishing the corresponding profiles during postnatal testicular development. Testis size increased during the first 8 weeks of life with the main driver being longitudinal outgrowth of seminiferous cords. The number of DDX4-positive cells per testis doubled between birth and 8 weeks of age whereas TFAP2C- and POU5F1-positive cells remained unchanged. This increase in DDX4-expressing cells indicates dynamic growth of the differentiated A-spermatogonial population. The presence of cells expressing POU5F1 and TFAP2C after 8 weeks reveals the persistence of less differentiated germ cells. The mRNA and protein profiles determined by qRT-PCR and western blot in newborn, 8-week-old, and adult marmosets corroborated the immunohistochemical findings. In conclusion, we demonstrated the presence of distinct spermatogonial subpopulations in the primate testis exhibiting different dynamics during early testicular development. Our study demonstrates the suitability of the marmoset testis as a model for human testicular development.


2017 ◽  
Vol 51 (4) ◽  
pp. 193-204 ◽  
Author(s):  
Dibyendu Dutta ◽  
In Park ◽  
Hiwot Guililat ◽  
Samuel Sang ◽  
Arpita Talapatra ◽  
...  

Abstract Objective. Testosterone depletion induces increased germ cell apoptosis in testes. However, limited studies exist on genes that regulate the germ cell apoptosis. Granzymes (GZM) are serine proteases that induce apoptosis in various tissues. Multiple granzymes, including GZMA, GZMB and GZMN, are present in testes. Th us, we investigated which granzyme may be testosterone responsive and possibly may have a role in germ cell apoptosis aft er testosterone depletion. Methods. Ethylene dimethane sulfonate (EDS), a toxicant that selectively ablates the Leydig cells, was injected into rats to withdraw the testosterone. The testosterone depletion effects after 7 days post-EDS were verified by replacing the testosterone exogenously into EDS-treated rats. Serum or testicular testosterone was measured by radioimmunoassay. Using qPCR, mRNAs of granzyme variants in testes were quantified. The germ cell apoptosis was identified by TUNEL assay and the localization of GZMK was by immunohistochemistry. Results. EDS treatment eliminated the Leydig cells and depleted serum and testicular testosterone. At 7 days post-EDS, testis weights were reduced 18% with increased germ cell apoptosis plus elevation GZMK expression. GZMK was not associated with TUNEL-positive cells, but was localized to stripped cytoplasm of spermatids. In addition, apoptotic round spermatids were observed in the caput epididymis. Conclusions. GZMK expression in testes is testosterone dependent. GZMK is located adjacent to germ cells in seminiferous tubules and the presence of apoptotic round spermatids in the epididymis suggest its role in the degradation of microtubules in ectoplasmic specializations. Thus, overexpression of GZMK may indirectly regulate germ cell apoptosis by premature release of round spermatids from seminiferous tubule lumen.


2016 ◽  
Vol 201 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ruhui Tian ◽  
Shi Yang ◽  
Yong Zhu ◽  
Shasha Zou ◽  
Peng Li ◽  
...  

Vascular endothelial growth factor (VEGF) plays fundamental roles in testicular development; however, its function on testicular regeneration remains unknown. The objective of this study was to explore the roles VEGF/VEGFR2 signaling plays in mouse germ cells and in mouse testicular regeneration. VEGF and the VEGFR2 antagonist SU5416 were added to culture medium to evaluate their effects on spermatogonial stem cell line (C18-4 cells) proliferation. Testicular cells obtained from newborn male ICR mice were grafted into the dorsal region of male BALB/c nude mice. VEGF and SU5416 were injected into the graft sites to assess the effects of the VEGF and VEGFR2 signaling pathways on testicular reconstitution. The grafts were analyzed after 8 weeks. We found that VEGF promoted C18-4 proliferation in vitro, indicating its role in germ cell survival. HE staining revealed that seminiferous tubules were reconstituted and male germ cells from spermatogonia to spermatids could be observed in testis-like tissues 8 weeks after grafting. A few advantaged male germ cells, including spermatocytes and spermatids, were found in SU5416-treated grafts. Moreover, VEGF enhanced the expression of genes specific for male germ cells and vascularization in 8-week grafts, whereas SU5416 decreased the expression of these genes. SU5416-treated grafts had a lower expression of MVH and CD31, indicating that blockade of VEGF/VEGFR2 signaling reduces the efficiency of seminiferous tubule reconstitution. Collectively, these data suggest that VEGF/VEGFR2 signaling regulates germ cell proliferation and promotes testicular regeneration via direct action on germ cells and the enhancement of vascularization.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 305-317 ◽  
Author(s):  
Carlos Lizama ◽  
Diego Rojas-Benítez ◽  
Marcelo Antonelli ◽  
Andreas Ludwig ◽  
Ximena Bustamante-Marín ◽  
...  

The pathways leading to male germ cell apoptosisin vivoare poorly understood, but are highly relevant for the comprehension of sperm production regulation by the testis. In this work, we show the evidence of a mechanism where germ cell apoptosis is induced through the inactivation and shedding of the extracellular domain of KIT (c-kit) by the protease TACE/a disintegrin and metalloprotease 17 (ADAM17) during the first wave of spermatogenesis in the rat. We show that germ cells undergoing apoptosis lacked the extracellular domain of the KIT receptor. TACE/ADAM17, a membrane-bound metalloprotease, was highly expressed in germ cells undergoing apoptosis as well. On the contrary, cell surface presence of ADAM10, a closely related metalloprotease isoform, was not associated with apoptotic germ cells. Pharmacological inhibition of TACE/ADAM17, but not ADAM10, significantly prevented germ cell apoptosis in the male pubertal rat. Induction of TACE/ADAM17 by the phorbol-ester phorbol 12-myristate 13-acetate (PMA) induced germ cell apoptosis, which was prevented when an inhibitor of TACE/ADAM17 was present in the assay.Ex-vivorat testis culture showed that PMA induced the cleavage of the KIT extracellular domain. Isolation of apoptotic germ cells showed that even though protein levels of TACE/ADAM17 were higher in apoptotic germ cells than in nonapoptotic cells, the contrary was observed for ADAM10. These results suggest that TACE/ADAM17 is one of the elements triggering physiological germ cell apoptosis during the first wave of spermatogenesis.


Reproduction ◽  
2007 ◽  
Vol 133 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Stephen Assinder ◽  
Ryan Davis ◽  
Mark Fenwick ◽  
Amy Glover

Apoptosis plays a critical role in regulating sperm production. Removal of androgens and gonadotropins, or estrogen administration induces germ cell apoptosis. It is hypothesized that dietary phytoestrogens increase apoptosis of developing germ cells, decreasing sperm production. This study aimed to test this in rats fed a high phytoestrogen diet only during adulthood. Male Wistar rats used in this study were offspring of females maintained on a low phytoestrogen diet prior to conception through to weaning. After weaning, juveniles were fed the same low phytoestrogen diet into adulthood. A cohort of males were transferred to a high phytoestrogen diet for 24 days and subsequently testes were collected from all animals. In the high phytoestrogen fed group, homogenization-resistant sperm counts were significantly decreased, as were epididymal sperm counts. Morphometric analysis determined round and elongated spermatid volumes to be significantly decreased, but seminiferous tubule lumen diameters to be significantly increased. TUNEL analysis determined that apoptosis of spermatocytes and round spermatids was significantly greater in the high phytoestrogen fed rats. Neither plasma gonadotropin concentrations nor testicular testosterone were altered. In conclusion, exposure of the adult male rat to a high phytoestrogen diet disrupts spermatogenesis, increasing germ cell apoptosis. This effect is independent of the hypothalamo–pituitary–testicular axis and is likely due to disruption of estrogen’s actions in the testis.


Sign in / Sign up

Export Citation Format

Share Document