A polymorphism within intron 11 of the tau gene is not increased in frequency in patients with sporadic Alzheimer's disease, nor does it influence the extent of tau pathology in the brain

2002 ◽  
Vol 324 (2) ◽  
pp. 113-116 ◽  
Author(s):  
E.K Green ◽  
U Thaker ◽  
A.M McDonagh ◽  
T Iwatsubo ◽  
J.-C Lambert ◽  
...  
PIERS Online ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 311-315 ◽  
Author(s):  
Natalia V. Bobkova ◽  
Vadim V. Novikov ◽  
Natalia I. Medvinskaya ◽  
Irina Yu. Aleksandrova ◽  
Eugenii E. Fesenko

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Lenka Hromadkova ◽  
Saak Victor Ovsepian

In Alzheimer’s disease (AD), tau pathology manifested in the accumulation of intraneuronal tangles and soluble toxic oligomers emerges as a potential therapeutic target. Multiple anti-tau antibodies inhibiting the formation and propagation of cytotoxic tau or promoting its clearance and degradation have been tested in clinical trials, albeit with the inconclusive outcome. Antibodies against tau protein have been found both in the brain circulatory system and at the periphery, but their origin and role under normal conditions and in AD remain unclear. While it is tempting to assign them a protective role in regulating tau level and removal of toxic variants, the supportive evidence remains sporadic, requiring systematic analysis and critical evaluation. Herein, we review recent data showing the occurrence of tau-reactive antibodies in the brain and peripheral circulation and discuss their origin and significance in tau clearance. Based on the emerging evidence, we cautiously propose that impairments of tau clearance at the periphery by humoral immunity might aggravate the tau pathology in the central nervous system, with implication for the neurodegenerative process of AD.


2021 ◽  
Vol 22 (23) ◽  
pp. 13136
Author(s):  
Han Seok Koh ◽  
SangJoon Lee ◽  
Hyo Jin Lee ◽  
Jae-Woong Min ◽  
Takeshi Iwatsubo ◽  
...  

Alzheimer’s disease (AD) is a form of dementia characterized by progressive memory decline and cognitive dysfunction. With only one FDA-approved therapy, effective treatment strategies for AD are urgently needed. In this study, we found that microRNA-485-3p (miR-485-3p) was overexpressed in the brain tissues, cerebrospinal fluid, and plasma of patients with AD, and its antisense oligonucleotide (ASO) reduced Aβ plaque accumulation, tau pathology development, neuroinflammation, and cognitive decline in a transgenic mouse model of AD. Mechanistically, miR-485-3p ASO enhanced Aβ clearance via CD36-mediated phagocytosis of Aβ in vitro and in vivo. Furthermore, miR-485-3p ASO administration reduced apoptosis, thereby effectively decreasing truncated tau levels. Moreover, miR-485-3p ASO treatment reduced secretion of proinflammatory cytokines, including IL-1β and TNF-α, and eventually relieved cognitive impairment. Collectively, our findings suggest that miR-485-3p is a useful biomarker of the inflammatory pathophysiology of AD and that miR-485-3p ASO represents a potential therapeutic candidate for managing AD pathology and cognitive decline.


Author(s):  
Angélica María Sabogal-Guáqueta ◽  
Julián David Arias-Londoño ◽  
Johanna Gutierrez-Vargas ◽  
D. Sepulveda-Falla ◽  
M. Glatzel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document