Medial amygdala-induced spike potentiation in the rat dentate gyrus is dependent on N-methyl-d-aspartate receptors and subcortical afferents

1998 ◽  
Vol 246 (2) ◽  
pp. 85-88 ◽  
Author(s):  
Kazuho Abe ◽  
Kengo Noguchi ◽  
Hiroshi Saito
1995 ◽  
Vol 74 (5) ◽  
pp. 2201-2203 ◽  
Author(s):  
Y. Ikegaya ◽  
K. Abe ◽  
H. Saito ◽  
N. Nishiyama

1. The present experiment was designed to test whether synaptic transmission and synaptic plasticity in the dentate gyrus were modulated by the medial amygdala (MeA). Field potentials in the dentate gyrus (DG) evoked by stimulations of the medial perforant path (PP) were extracellularly recorded in anesthetized rats. 2. Although single-pulse stimulation of the MeA augmented PP stimulation-evoked population spike amplitude in the DG transiently, high-frequency stimulation (100 Hz for 1 s) of the MeA induced long-lasting enhancement of synaptic transmission that was not occluded by PP tetanus-induced long-term potentiation (LTP). 3. When high-frequency stimulation of the MeA was applied concurrently with weak tetanus of the PP, which alone induced only marginal LTP, the magnitude of LTP increased considerably. 4. These results demonstrate that neuron activities in the MeA induce short- and long-lasting changes in the excitability of the PP-DG synapses and thereby enhance their synaptic plasticity.


2001 ◽  
Vol 12 (1) ◽  
pp. 8-14
Author(s):  
Gertraud Teuchert-Noodt ◽  
Ralf R. Dawirs

Abstract: Neuroplasticity research in connection with mental disorders has recently bridged the gap between basic neurobiology and applied neuropsychology. A non-invasive method in the gerbil (Meriones unguiculus) - the restricted versus enriched breading and the systemically applied single methamphetamine dose - offers an experimental approach to investigate psychoses. Acts of intervening affirm an activity dependent malfunctional reorganization in the prefrontal cortex and in the hippocampal dentate gyrus and reveal the dopamine position as being critical for the disruption of interactions between the areas concerned. From the extent of plasticity effects the probability and risk of psycho-cognitive development may be derived. Advance may be expected from insights into regulatory mechanisms of neurogenesis in the hippocampal dentate gyrus which is obviously to meet the necessary requirements to promote psycho-cognitive functions/malfunctions via the limbo-prefrontal circuit.


2005 ◽  
Vol 32 (S 4) ◽  
Author(s):  
A Kunze ◽  
S Grass ◽  
O.W Witte ◽  
G Kempermann ◽  
C Redecker

Sign in / Sign up

Export Citation Format

Share Document