Thermal stability of the induced magnetic anisotropy and structure of the nanocrystalline alloy FeCuNbSiB

2000 ◽  
Vol 215-216 ◽  
pp. 453-454 ◽  
Author(s):  
N.V Dmitrieva ◽  
N.M Kleinerman ◽  
V.A Lukshina ◽  
V.V Serikov ◽  
A.P Potapov
1999 ◽  
Vol 32 (1-4) ◽  
pp. 281-287 ◽  
Author(s):  
N. V. Dmitrieva ◽  
V. A. Lukshina ◽  
G. V. Kurlyandskaya ◽  
A. P. Potapov

Thermal stability of induced magnetic anisotropy (IMA) was studied in a course of subsequent annealings without any external effects for already field- or stress-annealed specimens of the nanocrystalline Fe73.5Cu1Nb3Si13.5B9 and amorphous Fe3Co67Cr3Si15B12 alloys. For these alloys the dependence of IMA thermal stability on the magnitude of the IMA constant (Ku) and temperature of stress-annealing was investigated. For the nanocrystalline alloy thermal stability of field- and stress-induced anisotropy with identical Ku was compared. It was shown that nanocrystalline specimens with identical Ku values after field- or stress-annealing have identical thermal stability of IMA. This can point to a similarity of the mechanisms of IMA formation after field- or stress-annealings. Thermal stability of stress-induced anisotropy in the nanocrystalline alloy with Ku value less than 1000 J/m3 and the amorphous alloy with Ku less than 100 J/m3 depends on the value of Ku. For both stress-annealed nanocrystalline and amorphous alloys magnetic anisotropy induced at higher temperatures is more stable because more long-range and energy-taking processes take place at these temperatures.


2003 ◽  
Vol 266 (3) ◽  
pp. 251-257 ◽  
Author(s):  
E.H. du Marchie van Voorthuysen ◽  
F.T. ten Broek ◽  
N.G. Chechenin ◽  
D.O. Boerma

1999 ◽  
Vol 32 (1-4) ◽  
pp. 289-294
Author(s):  
V. A. Lukshina ◽  
N. V. Dmitrieva ◽  
A. P. Potapov

For nanocrystalline alloy Fe73.5Cu1Nb3Si13.5B9 thermomechanical treatment was carried out simultaneously with nanocrystallizing annealing (1) or after it (2). It was shown that a change in magnetic properties for the case 1 is essentially greater than for the case 2. Complex effect of thermomagnetic and thermomechanical treatments on magnetic properties was studied in the above-mentioned nanocrystalline alloy as well as in the amorphous alloy Fe5Co70.6Si15B9.4., During the annealings both field and stress were aligned with the long side of the specimens. It was shown that the magnetic field, AC or DC, decreases an effect of loading. Moreover, the magnetic field, AC or DC, applied after stress-annealing can destroy the magnetic anisotropy already induced under load.


2010 ◽  
Vol 67 ◽  
pp. 108-112
Author(s):  
Giancarlo Bottoni

In Ba ferrite particles magnetocrystalline and shape anisotropies are contemporarily present and conflicting. The strength and evolution of the two anisotropies are studied, through the dependence of the anisotropy constants on temperature. While in pure Ba ferrite particles the anisotropy is uniaxial at all temperatures, since the magnetocrystalline anisotropy clearly prevails on shape anisotropy, in particles modified for employment in recording media the two anisotropies are comparable and at low temperatures the shape anisotropy result stronger than the crystalline anisotropy. Besides the irregular shape of the particles introduces further preferred directions for the magnetization. The Co/Ti-doped particles show a multiple axes anisotropy. The macroscopic magnetic properties are found in relationship with the evolution of the anisotropy. Also the influence that the presence of such multiple anisotropy has on the magnetization switching and on the thermal stability of the magnetization of the Ba ferrite particles is analyzed.


2012 ◽  
Vol 111 (7) ◽  
pp. 07C106 ◽  
Author(s):  
Yanyan Zhu ◽  
Zongzhi Zhang ◽  
Bin Ma ◽  
Q. Y. Jin

2019 ◽  
Vol 821 ◽  
pp. 250-255
Author(s):  
Vladimir S. Tsepelev ◽  
Yuri N. Starodubtsev ◽  
V.Ya. Belozerov

In this work, the effect of different inhibitors on the thermal stability of the magnetic properties in Fe73.5Cu1M3Si13.5B9 nanocrystalline alloys, where M = Nb, W, Mo, was investigated. Nanocrystalline alloy with tungsten has the greatest thermal stability. The change in the magnetic properties in the ageing process was associated with vacancies and vacancy clusters, the formation of which is facilitated by large atoms of inhibitory elements occupying free positions in the substitution solid solution.


Sign in / Sign up

Export Citation Format

Share Document