Agonist stimulation provokes dendritic and axonal dopamine D1 receptor redistribution in primary cultures of striatal neurons

Neuroscience ◽  
2000 ◽  
Vol 99 (2) ◽  
pp. 257-266 ◽  
Author(s):  
M.-L Martin-Negrier ◽  
G Charron ◽  
B Bloch
2022 ◽  
Author(s):  
Hui Dong ◽  
Ze-Ka Chen ◽  
Han Guo ◽  
Xiang-Shan Yuan ◽  
Cheng-Wei Liu ◽  
...  

2008 ◽  
Vol 283 (23) ◽  
pp. 15799-15806 ◽  
Author(s):  
Yuriko Iwakura ◽  
Hiroyuki Nawa ◽  
Ichiro Sora ◽  
Moses V. Chao

2021 ◽  
Author(s):  
Jace Jones-Tabah ◽  
Ryan D. Martin ◽  
Jennifer J. Chen ◽  
Jason C. Tanny ◽  
Paul B.S. Clarke ◽  
...  

The activity of striatal medium-spiny projection neurons is regulated by dopamine acting principally at D1 and D2 dopamine receptors. The dopamine D1 receptor (D1R) is a Gαs/olf-coupled GPCR which activates a cAMP/PKA/DARPP-32 signalling cascade that increases excitability and facilitates plasticity, partly through the regulation of transcription. Transcriptional regulation downstream of the D1R involves the activation of PKA, which can translocate to the nucleus to phosphorylate various targets. The chromatin reader Brd4 regulates transcription induced by neurotrophic factors in cortical neurons and has also been implicated in dopamine-dependent striatal functions. Brd4 is activated by phosphorylation; this facilitates its binding to acetylated histones at promoters and enhancers. In non-neuronal cells, Brd4 is recruited to chromatin in response to PKA signalling. However, it is unknown whether Brd4 is involved in transcriptional activation by the D1R in striatal neurons. Here, we demonstrate that cAMP/PKA signalling increases Brd4 recruitment to dopamine-induced genes in striatal neurons, and that knockdown or inhibition of Brd4 modulated D1R-induced gene expression. Specifically, inhibition of Brd4 with the bromodomain inhibitor JQ1 suppressed the expression of ~25% of D1R-upregulated genes, while increasing the expression of a subset of immediate-early genes, including Fos and Jun. This pro-transcriptional effect of JQ1 was P-TEFb-dependent, and mediated through inhibition of the BD1 bromodomain of Brd4. Finally, we report that JQ1 treatment downregulated expression of many GPCRs and also impaired ERK1/2 signalling in striatal neurons. Our findings identify Brd4 as a novel regulator of D1R-dependent transcription and delineate complex bi-directional effects of bromodomain inhibitors on neuronal transcription.


2020 ◽  
Author(s):  
Jace Jones-Tabah ◽  
Hanan Mohammad ◽  
Shadi Hadj-Youssef ◽  
Lucy Kim ◽  
Ryan D. Martin ◽  
...  

AbstractLike many G protein-coupled receptors (GPCRs), the signalling pathways regulated by the dopamine D1 receptor (D1R) are dynamic, cell-type specific, and can change in response to disease or drug exposures. In striatal neurons, the D1R activates cAMP/protein kinase A (PKA) signalling. However, in Parkinson’s disease (PD), alterations in this pathway lead to activation of extracellular regulated kinases (ERK1/2), contributing to L-DOPA-induced dyskinesia (LID). In order to detect D1R activation in vivo and to study the progressive dysregulation of D1R signalling in PD and LID, we developed ratiometric fiber-photometry with Förster resonance energy transfer (FRET) biosensors and optically detected PKA and ERK1/2 signalling in freely moving rats. We show that in Parkinsonian animals, D1R signalling through PKA and ERK1/2 is sensitized, but that following chronic treatment with L-DOPA, these pathways become partially desensitized while concurrently D1R activation leads to greater induction of dyskinesia.


1993 ◽  
Vol 18 ◽  
pp. S59
Author(s):  
Masashi Sasa ◽  
Taku Amano ◽  
Ujihara Hisamitsu ◽  
Hiroaki Matsubayashi ◽  
Yutaka Tamura ◽  
...  

2009 ◽  
Vol 297 (6) ◽  
pp. F1543-F1549 ◽  
Author(s):  
Mohammad Asghar ◽  
Gaurav Chugh ◽  
Mustafa F. Lokhandwala

We tested the effects of inflammation on renal dopamine D1 receptor signaling cascade, a key pathway that maintains sodium homeostasis and blood pressure during increased salt intake. Inflammation was produced by administering lipopolysaccharide (LPS; 4 mg/kg ip) to rats provided without (normal salt) and with 1% NaCl in drinking water for 2 wk (high salt). Control rats had saline injection and received tap water. We found that LPS increased the levels of inflammatory cytokines, interleukin-6, and tumor necrosis factor-α in the rats given either normal- or high-salt intake. Also, these rats had higher levels of oxidative stress markers, malondialdehyde and nitrotyrosine, and lower levels of antioxidant enzyme superoxide dismutase in the renal proximal tubules (RPTs). The nuclear levels of transcription factors NF-κB increased and Nrf2 decreased in the RPTs in response to LPS in rats given normal and high salt. Furthermore, D1 receptor numbers, D1 receptor proteins, and D1 receptor agonist (SKF38393)-mediated 35S-GTPγS binding decreased in the RPTs in these rats. The basal activities of Na-K-ATPase in the RPTs were similar in control and LPS-treated rats given normal and high salt. SKF38393 caused inhibition of Na-K-ATPase activity in the primary cultures of RPTs treated with vehicle but not in the cultures treated with LPS. Furthermore, LPS caused an increase in blood pressure in the rats given high salt but not in the rats given normal salt. These results suggest that LPS differentially regulates NF-κB and Nrf2, produces inflammation, decreases antioxidant enzyme, increases oxidative stress, and causes D1 receptor dysfunction in the RPTs. The LPS-induced dysfunction of renal D1 receptors alters salt handling and causes hypertension in rats during salt overload.


Sign in / Sign up

Export Citation Format

Share Document