Individual nucleus accumbens-projection neurons receive both basolateral amygdala and ventral subicular afferents in rats

Neuroscience ◽  
2003 ◽  
Vol 119 (1) ◽  
pp. 19-31 ◽  
Author(s):  
S.J. French ◽  
S. Totterdell
2021 ◽  
Vol 15 ◽  
Author(s):  
Andrew Dieterich ◽  
Joseph Floeder ◽  
Karina Stech ◽  
Jay Lee ◽  
Prachi Srivastava ◽  
...  

The basolateral amygdala (BLA) is critical for reward behaviors via a projection to the nucleus accumbens (NAc). Specifically, BLA-NAc projections are involved in reinforcement learning, reward-seeking, sustained instrumental responding, and risk behaviors. However, it remains unclear whether chronic stress interacts with BLA-NAc projection neurons to result in maladaptive behaviors. Here we take a chemogenetic, projection-specific approach to clarify how NAc-projecting BLA neurons affect avoidance, reward, and feeding behaviors in male mice. Then, we examine whether chemogenetic activation of NAc-projecting BLA neurons attenuates the maladaptive effects of chronic corticosterone (CORT) administration on these behaviors. CORT mimics the behavioral and neural effects of chronic stress exposure. We found a nuanced role of BLA-NAc neurons in mediating reward behaviors. Surprisingly, activation of BLA-NAc projections rescues CORT-induced deficits in the novelty suppressed feeding, a behavior typically associated with avoidance. Activation of BLA-NAc neurons also increases instrumental reward-seeking without affecting free-feeding in chronic CORT mice. Taken together, these data suggest that NAc-projecting BLA neurons are involved in chronic CORT-induced maladaptive reward and motivation behaviors.


2021 ◽  
Vol 7 (11) ◽  
pp. eabf1913
Author(s):  
Takuma Kitanishi ◽  
Ryoko Umaba ◽  
Kenji Mizuseki

The dorsal hippocampus conveys various information associated with spatial navigation; however, how the information is distributed to multiple downstream areas remains unknown. We investigated this by identifying axonal projections using optogenetics during large-scale recordings from the rat subiculum, the major hippocampal output structure. Subicular neurons demonstrated a noise-resistant representation of place, speed, and trajectory, which was as accurate as or even more accurate than that of hippocampal CA1 neurons. Speed- and trajectory-dependent firings were most prominent in neurons projecting to the retrosplenial cortex and nucleus accumbens, respectively. Place-related firing was uniformly observed in neurons targeting the retrosplenial cortex, nucleus accumbens, anteroventral thalamus, and medial mammillary body. Theta oscillations and sharp-wave/ripples tightly controlled the firing of projection neurons in a target region–specific manner. In conclusion, the dorsal subiculum robustly routes diverse navigation-associated information to downstream areas.


2000 ◽  
Vol 84 (5) ◽  
pp. 2204-2216 ◽  
Author(s):  
Marc L. Belleau ◽  
Richard A. Warren

We have studied the postnatal development of the physiological characteristics of nucleus accumbens (nAcb) neurons in slices from postnatal day 1 ( P1) to P49 rats using the whole cell patch-clamp technique. The majority of neurons (102/108) were physiologically identified as medium spiny (MS) projection neurons, and only these were subjected to detailed analysis. The remaining neurons displayed characteristics suggesting that they were not MS neurons. Around the time of birth and during the first postnatal weeks, the membrane and firing characteristics of MS neurons were quite different from those observed later. These characteristics changed rapidly during the first 3 postnatal weeks, at which point they began to resemble those found in adults. Both whole cell membrane resistance and membrane time constant decreased more than fourfold during the period studied. The resting membrane potential (RMP) also changed significantly from an average of −50 mV around birth to less than −80 mV by the end of the third postnatal week. During the first postnatal week, the current-voltage relationship of all encountered MS neurons was linear over a wide range of membrane potentials above and below RMP. Through the second postnatal week, the proportion of neurons displaying inward rectification in the hyperpolarized range increased steadily and after P15, all recorded MS neurons displayed significant inward rectification. At all ages, inward rectification was blocked by extracellular cesium and tetra-ethyl ammonium and was not changed by 4-aminopyridine; this shows that inward rectification was mediated by the same currents in young and mature MS neurons. MS neurons fired single and repetitive Na+/K+ action potentials as early as P1. Spike threshold and amplitude remained constant throughout development in contrast to spike duration, which decreased significantly over the same period. Depolarizing current pulses from rest showed that immature MS neurons fired action potentials more easily than their older counterparts. Taken together, the results from the present study suggest that young and adult nAcb MS neurons integrate excitatory synaptic inputs differently because of differences in their membrane and firing properties. These findings provide important insights into signal processing within nAcb during this critical period of development.


2022 ◽  
Author(s):  
Bridget A Matikainen-Ankney ◽  
Alex A Legaria ◽  
Yvan M Vachez ◽  
Caitlin A Murphy ◽  
Yiyan A Pan ◽  
...  

Obesity is a chronic relapsing disorder that is caused by an excess of caloric intake relative to energy expenditure. In addition to homeostatic feeding mechanisms, there is growing recognition of the involvement of food reward and motivation in the development of obesity. However, it remains unclear how brain circuits that control food reward and motivation are altered in obese animals. Here, we tested the hypothesis that signaling through pro-motivational circuits in the core of the nucleus accumbens (NAc) is enhanced in the obese state, leading to invigoration of food seeking. Using a novel behavioral assay that quantifies physical work during food seeking, we confirmed that obese mice work harder than lean mice to obtain food, consistent with an increase in the relative reinforcing value of food in the obese state. To explain this behavioral finding, we recorded neural activity in the NAc core with both in vivo electrophysiology and cell-type specific calcium fiber photometry. Here we observed greater activation of D1-receptor expressing NAc spiny projection neurons (NAc D1SPNs) during food seeking in obese mice relative to lean mice. With ex vivo slice physiology we identified both pre- and post-synaptic mechanisms that contribute to this enhancement in NAc D1SPN activity in obese mice. Finally, blocking synaptic transmission from D1SPNs decreased physical work during food seeking and attenuated high-fat diet-induced weight gain. These experiments demonstrate that obesity is associated with a selective increase in the activity of D1SPNs during food seeking, which enhances the vigor of food seeking. This work also establishes the necessity of D1SPNs in the development of diet-induced obesity, identifying a novel potential therapeutic target.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ronald Sladky ◽  
Federica Riva ◽  
Lisa Anna Rosenberger ◽  
Jack van Honk ◽  
Claus Lamm

AbstractCooperation and mutual trust are essential in our society, yet not everybody is trustworthy. In this fMRI study, 62 healthy volunteers performed a repeated trust game, placing trust in a trustworthy or an untrustworthy player. We found that the central amygdala was active during trust behavior planning while the basolateral amygdala was active during outcome evaluation. When planning the trust behavior, central and basolateral amygdala activation was stronger for the untrustworthy player compared to the trustworthy player but only in participants who actually learned to differentiate the trustworthiness of the players. Independent of learning success, nucleus accumbens encoded whether trust was reciprocated. This suggests that learning whom to trust is not related to reward processing in the nucleus accumbens, but rather to engagement of the amygdala. Our study overcomes major empirical gaps between animal models and human neuroimaging and shows how different subnuclei of the amygdala and connected areas orchestrate learning to form different subjective trustworthiness beliefs about others and guide trust choice behavior.


2001 ◽  
Vol 21 (16) ◽  
pp. 6370-6376 ◽  
Author(s):  
Stan B. Floresco ◽  
Charles D. Blaha ◽  
Charles R. Yang ◽  
Anthony G. Phillips

Sign in / Sign up

Export Citation Format

Share Document