organic cation transporter 3
Recently Published Documents


TOTAL DOCUMENTS

87
(FIVE YEARS 25)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 22 (24) ◽  
pp. 13420
Author(s):  
Nikki J. Clauss ◽  
Wouter Koek ◽  
Lynette C. Daws

A lack of effective treatment and sex-based disparities in psychostimulant addiction and overdose warrant further investigation into mechanisms underlying the abuse-related effects of amphetamine-like stimulants. Uptake-2 transporters such as organic cation transporter 3 (OCT3) and plasma membrane monoamine transporter (PMAT), lesser studied potential targets for the actions of stimulant drugs, are known to play a role in monoaminergic neurotransmission. Our goal was to examine the roles of OCT3 and PMAT in mediating amphetamine (1 mg/kg)-induced conditioned place preference (CPP) and sensitization to its locomotor stimulant effects, in males and females, using pharmacological, decynium-22 (D22; 0.1 mg/kg, a blocker of OCT3 and PMAT) and genetic (constitutive OCT3 and PMAT knockout (−/−) mice) approaches. Our results show that OCT3 is necessary for the development of CPP to amphetamine in males, whereas in females, PMAT is necessary for the ability of D22 to prevent the development of CPP to amphetamine. Both OCT3 and PMAT appear to be important for development of sensitization to the locomotor stimulant effect of amphetamine in females, and PMAT in males. Taken together, these findings support an important, sex-dependent role of OCT3 and PMAT in the rewarding and locomotor stimulant effects of amphetamine.


2021 ◽  
Author(s):  
Kelsey C Benton ◽  
Daniel S Wheeler ◽  
Beliz Kurtoglu ◽  
Mahshid Bagher Zadeh Ansari ◽  
Daniel P Cibich ◽  
...  

Studies in cardiomyocytes have established that adrenergic receptors, conventionally thought to initiate signaling events exclusively from the plasma membrane, can also localize to and signal from the nuclear membrane. Activation of these receptors by their endogenous cationic ligands requires transmembrane uptake mediated by organic cation transporter 3 (OCT3). We have demonstrated that OCT3 is densely localized to outer nuclear membranes in neurons and astrocytes, suggesting that nuclear adrenergic signaling is also present in the central nervous system. In this study, we examined the subcellular localization of β1-adrenergic receptors, their G-protein signaling partners, and catecholamine transporters in mouse astrocytes. We identified a population of β1-adrenergic receptors localized to astrocyte inner nuclear membranes. We demonstrated that key components of Gs-mediated signaling are localized to the nuclear compartment and identified OCT3 and other catecholamine transporters localized to plasma and nuclear membranes. Treatment of astrocytes with NE induced rapid increases in nuclear PKA activity which were blocked by pretreatment with inhibitors of catecholamine transport. These data indicate that nuclear adrenergic receptors are functionally coupled to Gs-coupled signaling mediators and that their activation by norepinephrine requires transporter-mediated uptake. These receptors represent a powerful mechanism by which norepinephrine may alter astrocyte gene expression and brain function.


2021 ◽  
Vol 35 (S1) ◽  
Author(s):  
Nikki Clauss ◽  
Anthony Owens ◽  
Melissa Vitela ◽  
Melodi Bowman ◽  
Geogianna Gould ◽  
...  

Author(s):  
Sophie N Saxton ◽  
Lauren K Toms ◽  
Robert G Aldous ◽  
Sarah B Withers ◽  
Jacqueline Ohanian ◽  
...  

AbstractPurposePerivascular adipose tissue (PVAT) exerts an anti-contractile effect which is vital in regulating vascular tone. This effect is mediated via sympathetic nervous stimulation of PVAT by a mechanism which involves noradrenaline uptake through organic cation transporter 3 (OCT3) and β3-adrenoceptor-mediated adiponectin release. In obesity, autonomic dysfunction occurs, which may result in a loss of PVAT function and subsequent vascular disease. Accordingly, we have investigated abnormalities in obese PVAT, and the potential for exercise in restoring function.MethodsVascular contractility to electrical field stimulation (EFS) was assessed ex vivo in the presence of pharmacological tools in ±PVAT vessels from obese and exercised obese mice. Immunohistochemistry was used to detect changes in expression of β3-adrenoceptors, OCT3 and tumour necrosis factor-α (TNFα) in PVAT.ResultsHigh fat feeding induced hypertension, hyperglycaemia, and hyperinsulinaemia, which was reversed using exercise, independent of weight loss. Obesity induced a loss of the PVAT anti-contractile effect, which could not be restored via β3-adrenoceptor activation. Moreover, adiponectin no longer exerts vasodilation. Additionally, exercise reversed PVAT dysfunction in obesity by reducing inflammation of PVAT and increasing β3-adrenoceptor and OCT3 expression, which were downregulated in obesity. Furthermore, the vasodilator effects of adiponectin were restored.ConclusionLoss of neutrally mediated PVAT anti-contractile function in obesity will contribute to the development of hypertension and type II diabetes. Exercise training will restore function and treat the vascular complications of obesity.


2021 ◽  
Vol 118 (5) ◽  
pp. e2020168118
Author(s):  
Kevin M. Huang ◽  
Megan Zavorka Thomas ◽  
Tarek Magdy ◽  
Eric D. Eisenmann ◽  
Muhammad Erfan Uddin ◽  
...  

Doxorubicin is a commonly used anticancer agent that can cause debilitating and irreversible cardiac injury. The initiating mechanisms contributing to this side effect remain unknown, and current preventative strategies offer only modest protection. Using stem-cell–derived cardiomyocytes from patients receiving doxorubicin, we probed the transcriptomic landscape of solute carriers and identified organic cation transporter 3 (OCT3) (SLC22A3) as a critical transporter regulating the cardiac accumulation of doxorubicin. Functional validation studies in heterologous overexpression models confirmed that doxorubicin is transported into cardiomyocytes by OCT3 and that deficiency of OCT3 protected mice from acute and chronic doxorubicin-related changes in cardiovascular function and genetic pathways associated with cardiac damage. To provide proof-of-principle and demonstrate translational relevance of this transport mechanism, we identified several pharmacological inhibitors of OCT3, including nilotinib, and found that pharmacological targeting of OCT3 can also preserve cardiovascular function following treatment with doxorubicin without affecting its plasma levels or antitumor effects in multiple models of leukemia and breast cancer. Finally, we identified a previously unrecognized, OCT3-dependent pathway of doxorubicin-induced cardiotoxicity that results in a downstream signaling cascade involving the calcium-binding proteins S100A8 and S100A9. These collective findings not only shed light on the etiology of doxorubicin-induced cardiotoxicity, but also are of potential translational relevance and provide a rationale for the implementation of a targeted intervention strategy to prevent this debilitating side effect.


Author(s):  
Ying Wang ◽  
Qian Shi ◽  
Minhui Li ◽  
Meimi Zhao ◽  
Gopireddy Raghavender Reddy ◽  
...  

Rationale: β 1 -adrenoceptors (β 1 ARs) exist at intracellular membranes and Organic Cation Transporter 3 (OCT3) mediates norepinephrine entry into cardiomyocytes. However, the functional role of intracellular β 1 AR in cardiac contractility remains to be elucidated. Objective: Test localization and function of intracellular β 1 AR on cardiac contractility. Methods and Results: Membrane fractionation, super-resolution imaging, proximity ligation, co-immunoprecipitation and single-molecule pulldown demonstrated a pool of β 1 ARs in mouse hearts that was associated with sarco/endoplasmic reticulum Ca 2+ -ATPase at the sarcoplasmic reticulum (SR). Local protein kinase A (PKA) activation was measured using a PKA biosensor targeted at either the plasma membrane (PM) or SR. Compared to wild type (WT), myocytes lacking OCT3 (OCT3KO) responded identically to the membrane-permeant βAR agonist isoproterenol in PKA activation at both PM and SR. The same was true at the PM for membrane-impermeant norepinephrine, but the SR response to norepinephrine was suppressed in OCT3KO myocytes. This differential effect was recapitulated in phosphorylation of the SR-pump regulator phospholamban. Similarly, OCT3KO selectively suppressed calcium transients and contraction responses to norepinephrine, but not isoproterenol. Furthermore, sotalol, a membrane-impermeant βAR-blocker suppressed isoproterenol-induced PKA activation at the PM, but permitted PKA activation at the SR, phospholamban phosphorylation and contractility. Moreover, pretreatment with sotatol in OCT3KO myocytes prevented norepinephrine induced PKA activation at both PM and the SR and contractility. Conclusions: Functional β 1 ARs exists at the SR and is critical for PKA-mediated phosphorylation of phospholamban and cardiac contractility upon catecholamine stimulation. Activation of these intracellular β 1 ARs requires catecholamine transport via OCT3.


Sign in / Sign up

Export Citation Format

Share Document