Somatostatin receptor subtype 2A expression in the rat retina

Neuroscience ◽  
1999 ◽  
Vol 94 (3) ◽  
pp. 675-683 ◽  
Author(s):  
J. Johnson ◽  
V. Wu ◽  
H. Wong ◽  
J.H. Walsh ◽  
N.C. Brecha
Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1816
Author(s):  
Jessica Amarù ◽  
Federica Barbieri ◽  
Marica Arvigo ◽  
Agnese Solari ◽  
Adriana Bajetto ◽  
...  

First-generation somatostatin receptor ligands (fg-SRLs), such as octreotide (OCT), represent the first-line medical therapy in acromegaly. Fg-SRLs show a preferential binding affinity for somatostatin receptor subtype-2 (SST2), while the second-generation ligand, pasireotide (PAS), has high affinity for multiple SSTs (SST5 > SST2 > SST3 > SST1). Whether PAS acts via SST2 in somatotroph tumors, or through other SSTs (e.g., SST5), is a matter of debate. In this light, the combined treatment OCT+PAS could result in additive/synergistic effects. We evaluated the efficacy of OCT and PAS (alone and in combination) on growth hormone (GH) secretion in primary cultures from human somatotroph tumors, as well as on cell proliferation, intracellular signaling and receptor trafficking in the rat GH4C1 cell line. The results confirmed the superimposable efficacy of OCT and PAS in reducing GH secretion (primary cultures), cell proliferation, cAMP accumulation and intracellular [Ca2+] increase (GH4C1 cells), without any additive effect observed for OCT+PAS. In GH4C1 cells, co-incubation with a SST2-selective antagonist reversed the inhibitory effect of OCT and PAS on cell proliferation and cAMP accumulation, while both compounds resulted in a robust internalization of SST2 (but not SST5). In conclusion, OCT and PAS seem to act mainly through SST2 in somatotroph tumor cells in vitro, without inducing any additive/synergistic effect when tested in combination.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rosalba Mansi ◽  
Karim Abid ◽  
Guillaume P. Nicolas ◽  
Luigi Del Pozzo ◽  
Eric Grouzmann ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 19
Author(s):  
Melpomeni Fani ◽  
Viktoria Weingaertner ◽  
Petra Kolenc Peitl ◽  
Rosalba Mansi ◽  
Raghuvir H. Gaonkar ◽  
...  

Recently, radiolabelled antagonists targeting somatostatin receptors subtype 2 (SST2) in neuroendocrine neoplasms demonstrated certain superior properties over agonists. Within the ERA-PerMED project “TECANT” two 99mTc-Tetramine (N4)-derivatized SST2 antagonists (TECANT-1 and TECANT-2) were studied for the selection of the best candidate for clinical translation. Receptor-affinity, internalization and dissociation studies were performed in human embryonic kidney-293 (HEK293) cells transfected with the human SST2 (HEK-SST2). Log D, protein binding and stability in human serum were assessed. Biodistribution and SPECT/CT studies were carried out in nude mice bearing HEK-SST2 xenografts, together with dosimetric estimations from mouse-to-man. [99mTc]Tc-TECANT-1 showed higher hydrophilicity and lower protein binding than [99mTc]-TECANT-2, while stability was comparable. Both radiotracers revealed similar binding affinity, while [99mTc]Tc-TECANT-1 had higher cellular uptake (>50%, at 2 h/37 °C) and lower dissociation rate (<30%, at 2 h/37 °C). In vivo, [99mTc]Tc-TECANT-1 showed lower blood values, kidney and muscles uptake, whereas tumour uptake was comparable to [99mTc]Tc-TECANT-2. SPECT/CT imaging confirmed the biodistribution results, providing the best tumour-to-background image contrast for [99mTc]Tc-TECANT-1 at 4 h post-injection (p.i.). The estimated radiation dose amounted to approximately 6 µSv/MBq for both radiotracers. This preclinical study provided the basis of selection of [99mTc]Tc-TECANT-1 for clinical translation of the first 99mTc-based SST2 antagonist.


2007 ◽  
Vol 34 (11) ◽  
pp. 1854-1860 ◽  
Author(s):  
Edgar J. Rolleman ◽  
Peter P. M. Kooij ◽  
Wouter W. de Herder ◽  
Roelf Valkema ◽  
Eric P. Krenning ◽  
...  

2005 ◽  
Vol 29 (12) ◽  
pp. 1642-1651 ◽  
Author(s):  
Meike K??rner ◽  
V??ronique Eltschinger ◽  
Beatrice Waser ◽  
Agnes Schonbrunn ◽  
Jean Claude Reubi

2014 ◽  
Vol 99 (12) ◽  
pp. E2463-E2471 ◽  
Author(s):  
Yves Mear ◽  
Marie-Pierre Blanchard ◽  
Céline Defilles ◽  
Thierry Brue ◽  
Dominique Figarella-Branger ◽  
...  

Context: The ghrelin receptor GHS-R1a is highly expressed in human somatotroph adenomas and exhibits unusually high basal signaling activity. In humans, the suppression of this constitutive activity by mutation induces a short stature. Objective: Using a GHS-R1a inverse agonist, modified substance P (MSP), we explored the role of GHS-R1a constitutive activity in GH hypersecretion from somatotroph adenomas and as a putative therapeutic target. Design: The effects of MSP were assessed on GH secretion from 19 human somatotroph tumors in vitro. Moreover, these effects were compared with those of octreotide (somatostatin receptor subtype 2 [sst2] agonist) and with the combination of both drugs. Expression and localization of GHS-R1a and sst2 were studied. Results: For all tumors, MSP inhibited GH secretion in a dose-dependent manner from 13 to 64%. Moreover, MSP enhanced octreotide-induced GH inhibition. For five tumors, the effects of combined MSP plus octreotide treatment were significantly higher than the sum of effects of each drug alone. MSP increased the membrane localization of GHS-R1a and of microdomains colocalizing sst2-GHS-R1a, highlighting the cooperation between the two drugs. Conclusions: The GHS-R1a inverse agonist could open new therapeutic options for acromegalic patients, particularly patients partially sensitive to octreotide whose GH secretion is not completely controlled by the sst2 agonist.


2002 ◽  
Vol 105 (1) ◽  
pp. 58-64 ◽  
Author(s):  
William E. Fisher ◽  
YuanQing Wu ◽  
Felipe Amaya ◽  
David H. Berger

Endocrinology ◽  
2000 ◽  
Vol 141 (3) ◽  
pp. 967-979 ◽  
Author(s):  
Christophe Lanneau ◽  
Marie Thérèse Bluet-Pajot ◽  
Philippe Zizzari ◽  
Zsolt Csaba ◽  
Pascal Dournaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document