Paraquat-resistant cell lines derived from chinese hamster ovary cells

1990 ◽  
Vol 14 (3) ◽  
pp. 235-246 ◽  
Author(s):  
T LEE ◽  
F LIN ◽  
I HO ◽  
T LIU ◽  
T WANG ◽  
...  
1989 ◽  
Vol 9 (7) ◽  
pp. 2922-2927
Author(s):  
I L Andrulis ◽  
M T Barrett

In Chinese hamster ovary cells, the gene for asparagine synthetase, which spans 20 kilobase pairs, was found to contain a cluster of potential sites for CpG methylation in a 1-kilobase-pair region surrounding the first exon. Fourteen of the sites that could be assayed for methylation by MspI-HpaII digestions were found in this region, with an additional nine MspI sites spread throughout the remainder of the gene. The methylation status of the gene was analyzed in a series of cell lines that differed in the amount of asparagine synthetase activity. The level of expression showed a direct correlation with the extent of methylation of a subset of the MspI sites found in the 5' region of the gene. The rest of the gene was completely methylated in most cell lines. Wild-type cells, which expressed a basal level of asparagine synthetase activity, were partially demethylated in the 5' region. In contrast, asparagine-requiring N3 cells, which lacked detectable mRNA for asparagine synthetase, were methylated throughout the entire gene. Spontaneous revertants of strain N3, selected for growth in asparagine-free medium, exhibited extensive hypomethylation of the asparagine synthetase gene. The methylation pattern of the gene in cell lines that overproduced the enzyme was also examined. Albizziin-resistant cell lines, which had amplified copies of the gene, were extensively demethylated in the 5' region. Overexpression of asparagine synthetase in beta-aspartyl hydroxamate-resistant lines without amplified copies of the gene was also correlated with DNA hypomethylation.


1983 ◽  
Vol 3 (7) ◽  
pp. 1172-1181
Author(s):  
W E Bradley

Two classes of cell lines heterozygous at the galactokinase (glk) locus have been isolated from Chinese hamster ovary cells. Class I, selected by plating nonmutagenized wild-type cells at low density in medium containing 2-deoxygalactose at a partially selective concentration, underwent subsequent mutation to the glk-/- genotype at a low frequency (approximately 10(-6) per cell), which was increased by mutagenesis. Class II heterozygotes, isolated by sib selection from mutagenized wild-type cells, had a higher spontaneous frequency of mutation to the homozygous state (approximately 10(-4) per cell), which was not affected by mutagenesis. About half of the glk-/- mutants derived from a class II heterozygote, but not the heterozygote itself, were functionally hemizygous at the syntenic thymidine kinase (tk) locus. Similarly, a tk+/- heterozygote with characteristics analogous to the class II glk+/- cell lines underwent high-frequency mutation to tk-/-, and most of these mutants, but not the tk+/- heterozygote, were functionally hemizygous at the glk locus. A model is proposed, similar to that for the mutational events at the adenine phosphoribosyl transferase locus (W. E. C. Bradley and D. Letovanec, Somatic Cell Genet. 8:51-66, 1982), of two different events, high and low frequency, being responsible for mutation at either of the linked loci tk and glk. The low-frequency event may be a point mutation, but the high-frequency event, in many instances, involves coordinated inactivation of a portion of a chromosome carrying the two linked alleles. Class II heterozygotes would be generated as a result of a low-frequency event at one allele, and class I heterozygotes would be generated by a high-frequency event. Supporting this model was the demonstration that all class I glk+/- lines examined were functionally hemizygous at tk.


1989 ◽  
Vol 9 (5) ◽  
pp. 1832-1838
Author(s):  
K J Kontis ◽  
S M Arfin

A cDNA for threonyl-tRNA synthetase was isolated from a human placental cDNA lambda gt11 expression library by immunological screening, and its identity was confirmed by hybrid-selected mRNA translation. With this cDNA used as a hybridization probe, borrelidin-resistant Chinese hamster ovary cells that overproduced threonyl-tRNA synthetase were shown to have increased levels of threonyl-tRNA synthetase mRNA and gene sequences. Amplification of the gene did not appear to have been accompanied by any major structural reorganizations.


1981 ◽  
Vol 1 (6) ◽  
pp. 544-551 ◽  
Author(s):  
B Ray ◽  
H C Wu

Internalization of ricin into Chinese hamster ovary cells has been investigated. Combined treatment with galactose and pronase at 0 degrees C resulted in a complete release of surface-bound [125I]ricin into the media. Galactose-pronase-resistant cell-bound [125I]ricin represents internalized ricin molecules inside the cells. The internalization process is time, temperature, and concentration dependent. The pH optimum of internalization of ricin is about pH 7. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis has revealed that intact ricin molecules are internalized. Neither reduction nor proteolytic processing of ricin is required for the entry of ricin into Chinese hamster ovary cells.


1996 ◽  
Vol 313 (3) ◽  
pp. 991-996 ◽  
Author(s):  
Michael R. NARKEWICZ ◽  
S. David SAULS ◽  
Susan S. TJOA ◽  
Cecilia TENG ◽  
Paul V. FENNESSEY

Serine hydroxymethyltransferase (SHMT) is the primary enzyme in the interconversion of serine and glycine. The roles of mitochondrial and cytosolic SHMT in the interconversion of serine and glycine were determined in two Chinese hamster ovary (CHO) cell lines that both contain cytosolic SHMT but either have (CHOm+) or lack (CHOm-) mitochondrial SHMT. Mitochondrial SHMT activity was significantly reduced in CHOm- (0.24±0.11 nmol/min per mg of mitochondrial protein) compared with CHOm+ (3.21±0.66 nmol/min per mg of mitochondrial protein; P = 0.02) cells, whereas cytosolic SHMT activity was similar in CHOm- and CHOm+ cells (1.09±0.31 and 1.53±0.12 nmol/min per mg of cytosolic protein respectively; P = 0.57). In CHOm+ and CHOm- cells, the relative flux of glycine to serine measured with either [1-13C]- or [2-13C]-glycine was similar (CHOm-: 538±82 nmol/24 per mg of DNA; CHOm+: 616±88 nmol/24 h per mg of DNA; P = 0.42). In contrast, the relative flux of serine to glycine measured with [1-13C]serine was low in CHOm- cells (80±28 nmol/24 h per mg of DNA) compared with CHOm+ cells (3080±320 nmol/24 h per mg of DNA; P = 0.0001). The rate of glycine production determined by UA-2[1-13C]glycine dilution was lower in CHOm- (1200±200 nmol/24 h per mg of DNA) than CHOm+ (10200±1800 nmol/24 h per mg of DNA; P = 0.03) cells, whereas glycine utilization was similar in the two cell lines. Serine production was similar in the two cell lines but serine utilization was lower in CHOm- (3800±1200 μmol/24 h per mg of DNA) than CHOm+ (6600±1000 nmol/24 h per mg of DNA; P = 0.0002) cells. Increasing the serine concentration in the medium resulted in an increase in glycine production in CHOm+ but not in CHOm- cells. Intracellular studies with [1-13C]serine confirm the findings of decreased glycine production from serine. In CHO cells there is partitioning of intracellular serine and glycine metabolism. Our data support the hypothesis that mitochondrial SHMT is the primary pathway for serine into glycine interconversion.


1981 ◽  
Vol 1 (1) ◽  
pp. 58-65 ◽  
Author(s):  
J J Wasmuth ◽  
J M Hill ◽  
L S Vock

We have isolated emetine-resistant cell lines from Chinese hamster peritoneal fibroblasts and have shown that they represent a third distinct class or complementation group of emetine-resistant mutants, as determined by three different criteria. These mutants, like those belonging to the two other complementation groups we have previously defined, which were isolated from Chinese hamster lung and Chinese hamster ovary cells, have alterations that directly affect the protein biosynthetic machinery. So far, there is absolute cell line specificity with respect to the three complementation groups, in that all the emetine-resistant mutants we have isolated from Chinese hamster lung cells belong to one complementation group, all those we have isolated from Chinese hamster ovary cells belong to a second complementation group, and all those isolated from Chinese hamster peritoneal cells belong to a third complementation group. Thus, in cultured Chinese hamster cells, mutations in at least three different loci, designated emtA, emtB, and emtC, encoding for different components of the protein biosynthetic machinery, can give rise to the emetine-resistant phenotype.


Sign in / Sign up

Export Citation Format

Share Document