Neurodegeneration in amyotrophic lateral sclerosis: the role of oxidative stress and altered homeostasis of metals

2003 ◽  
Vol 61 (4) ◽  
pp. 365-374 ◽  
Author(s):  
Maria Teresa Carrı̀ ◽  
Alberto Ferri ◽  
Mauro Cozzolino ◽  
Lilia Calabrese ◽  
Giuseppe Rotilio
2020 ◽  
Vol 2020 ◽  
pp. 1-29
Author(s):  
Teresa Cunha-Oliveira ◽  
Liliana Montezinho ◽  
Catarina Mendes ◽  
Omidreza Firuzi ◽  
Luciano Saso ◽  
...  

Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig’s disease or Charcot disease, is a fatal neurodegenerative disease that affects motor neurons (MNs) and leads to death within 2–5 years of diagnosis, without any effective therapy available. Although the pathological mechanisms leading to ALS are still unknown, a wealth of evidence indicates that an excessive reactive oxygen species (ROS) production associated with an inefficient antioxidant defense represents an important pathological feature in ALS. Substantial evidence indicates that oxidative stress (OS) is implicated in the loss of MNs and in mitochondrial dysfunction, contributing decisively to neurodegeneration in ALS. Although the modulation of OS represents a promising approach to protect MNs from degeneration, the fact that several antioxidants with beneficial effects in animal models failed to show any therapeutic benefit in patients raises several questions that should be analyzed. Using specific queries for literature search on PubMed, we review here the role of OS-related mechanisms in ALS, including the involvement of altered mitochondrial function with repercussions in neurodegeneration. We also describe antioxidant compounds that have been mostly tested in preclinical and clinical trials of ALS, also describing their respective mechanisms of action. While the description of OS mechanism in the different mutations identified in ALS has as principal objective to clarify the contribution of OS in ALS, the description of positive and negative outcomes for each antioxidant is aimed at paving the way for novel opportunities for intervention. In conclusion, although antioxidant strategies represent a very promising approach to slow the progression of the disease, it is of utmost need to invest on the characterization of OS profiles representative of each subtype of patient, in order to develop personalized therapies, allowing to understand the characteristics of antioxidants that have beneficial effects on different subtypes of patients.


Diagnostics ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1546
Author(s):  
Hee Ra Park ◽  
Eun Jin Yang

Amyotrophic lateral sclerosis (ALS), also known as motor neuron disease (MND) and Lou Gehrig’s disease, is characterized by a loss of the lower motor neurons in the spinal cord and the upper motor neurons in the cerebral cortex. Due to the complex and multifactorial nature of the various risk factors and mechanisms that are related to motor neuronal degeneration, the pathological mechanisms of ALS are not fully understood. Oxidative stress is one of the known causes of ALS pathogenesis. This has been observed in patients as well as in cellular and animal models, and is known to induce mitochondrial dysfunction and the loss of motor neurons. Numerous therapeutic agents have been developed to inhibit oxidative stress and neuroinflammation. In this review, we describe the role of oxidative stress in ALS pathogenesis, and discuss several anti-inflammatory and anti-oxidative agents as potential therapeutics for ALS. Although oxidative stress and antioxidant fields are meaningful approaches to delay disease progression and prolong the survival in ALS, it is necessary to investigate various animal models or humans with different subtypes of sporadic and familial ALS.


2020 ◽  
Vol 21 (9) ◽  
pp. 3299
Author(s):  
Cristina Angeloni ◽  
Martina Gatti ◽  
Cecilia Prata ◽  
Silvana Hrelia ◽  
Tullia Maraldi

Neurodegenerative diseases include a variety of pathologies such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and so forth, which share many common characteristics such as oxidative stress, glycation, abnormal protein deposition, inflammation, and progressive neuronal loss. The last century has witnessed significant research to identify mechanisms and risk factors contributing to the complex etiopathogenesis of neurodegenerative diseases, such as genetic, vascular/metabolic, and lifestyle-related factors, which often co-occur and interact with each other. Apart from several environmental or genetic factors, in recent years, much evidence hints that impairment in redox homeostasis is a common mechanism in different neurological diseases. However, from a pharmacological perspective, oxidative stress is a difficult target, and antioxidants, the only strategy used so far, have been ineffective or even provoked side effects. In this review, we report an analysis of the recent literature on the role of oxidative stress in Alzheimer’s and Parkinson’s diseases as well as in amyotrophic lateral sclerosis, retinal ganglion cells, and ataxia. Moreover, the contribution of stem cells has been widely explored, looking at their potential in neuronal differentiation and reporting findings on their application in fighting oxidative stress in different neurodegenerative diseases. In particular, the exposure to mesenchymal stem cells or their secretome can be considered as a promising therapeutic strategy to enhance antioxidant capacity and neurotrophin expression while inhibiting pro-inflammatory cytokine secretion, which are common aspects of neurodegenerative pathologies. Further studies are needed to identify a tailored approach for each neurodegenerative disease in order to design more effective stem cell therapeutic strategies to prevent a broad range of neurodegenerative disorders.


Author(s):  
Eveliina Pollari ◽  
Gundars Goldsteins ◽  
Geneviève Bart ◽  
Jari Koistinaho ◽  
Rashid Giniatullin

2010 ◽  
Vol 35 (10) ◽  
pp. 1530-1537 ◽  
Author(s):  
Athan Baillet ◽  
Vanessa Chanteperdrix ◽  
Candice Trocmé ◽  
Pierre Casez ◽  
Catherine Garrel ◽  
...  

2020 ◽  
Vol 18 (10) ◽  
pp. 779-790 ◽  
Author(s):  
Alexandre LeBlanc ◽  
Miroslava Cuperlovic-Culf ◽  
Pier Jr. Morin ◽  
Mohamed Touaibia

Background:: The current therapeutic options available to patients diagnosed with Amyotrophic Lateral Sclerosis (ALS) are limited and edaravone is a compound that has gained significant interest for its therapeutic potential in this condition. Objectives: : The current work was thus undertaken to synthesize and characterize a series of edaravone analogues. Methods: A total of 17 analogues were synthesized and characterized for their antioxidant properties, radical scavenging potential and copper-chelating capabilities. Results: Radical scavenging and copper-chelating properties were notably observed for edaravone. Analogues bearing hydrogen in position 1 and a phenyl at position 3 and a phenyl in both positions of pyrazol-5 (4H)-one displayed substantial radical scavenging, antioxidants and copper-chelating properties. High accessibility of electronegative groups combined with higher electronegativity and partial charge of the carbonyl moiety in edaravone might explain the observed difference in the activity of edaravone relative to the closely related analogues 6 and 7 bearing hydrogen at position 1 and a phenyl at position 3 (6) and a phenyl in both positions (7). Conclusion: Overall, this study reveals a subset of edaravone analogues with interesting properties. Further investigation of these compounds is foreseen in relevant models of oxidative stress-associated diseases in order to assess their therapeutic potential in such conditions.


Sign in / Sign up

Export Citation Format

Share Document