The total gamma-activity of 235U fission products

1959 ◽  
Vol 1 (1) ◽  
pp. 50-51
Author(s):  
V.N. Sakharov ◽  
A.I. Malofeev
Talanta ◽  
2019 ◽  
Vol 205 ◽  
pp. 120079 ◽  
Author(s):  
Benjamin D. Roach ◽  
Emilie K. Fenske ◽  
David C. Glasgow ◽  
John D. Partridge ◽  
Tamara J. Keever ◽  
...  

1976 ◽  
Vol 32 ◽  
pp. 169-182
Author(s):  
B. Kuchowicz

SummaryIsotopic shifts in the lines of the heavy elements in Ap stars, and the characteristic abundance pattern of these elements point to the fact that we are observing mainly the products of rapid neutron capture. The peculiar A stars may be treated as the show windows for the products of a recent r-process in their neighbourhood. This process can be located either in Supernovae exploding in a binary system in which the present Ap stars were secondaries, or in Supernovae exploding in young clusters. Secondary processes, e.g. spontaneous fission or nuclear reactions with highly abundant fission products, may occur further with the r-processed material in the surface of the Ap stars. The role of these stars to the theory of nucleosynthesis and to nuclear physics is emphasized.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
T. E. Mitchell ◽  
R. B. Schwarz

Traditional oxide glasses occur naturally as obsidian and can be made easily by suitable cooling histories. In the past 30 years, a variety of techniques have been discovered which amorphize normally crystalline materials such as metals. These include [1-3]:Rapid quenching from the vapor phase.Rapid quenching from the liquid phase.Electrodeposition of certain alloys, e.g. Fe-P.Oxidation of crystals to produce amorphous surface oxide layers.Interdiffusion of two pure crystalline metals.Hydrogen-induced vitrification of an intermetal1ic.Mechanical alloying and ball-milling of intermetal lie compounds.Irradiation processes of all kinds using ions, electrons, neutrons, and fission products.We offer here some general comments on the use of TEM to study these materials and give some particular examples of such studies.Thin specimens can be prepared from bulk homogeneous materials in the usual way. Most often, however, amorphous materials are in the form of surface films or interfacial films with different chemistry from the substrates.


2010 ◽  
Author(s):  
R. Tukel ◽  
B.A. Arslan ◽  
B.A. Ertekin ◽  
E. Ertekin ◽  
S. Oflaz ◽  
...  

2003 ◽  
Vol 40 (2) ◽  
pp. 104-113 ◽  
Author(s):  
Isamu SATO ◽  
Toshio NAKAGIRI ◽  
Takashi HIROSAWA ◽  
Sinya MIYAHARA ◽  
Takashi NAMEKAWA

Sign in / Sign up

Export Citation Format

Share Document