scholarly journals HPOPT97 Second Workshop on High Performance Optimization Techniques

1997 ◽  
Vol 81 (2) ◽  
pp. N10
2009 ◽  
Vol 17 (1-2) ◽  
pp. 135-151 ◽  
Author(s):  
Guochun Shi ◽  
Volodymyr V. Kindratenko ◽  
Ivan S. Ufimtsev ◽  
Todd J. Martinez ◽  
James C. Phillips ◽  
...  

The Cell Broadband Engine architecture is a revolutionary processor architecture well suited for many scientific codes. This paper reports on an effort to implement several traditional high-performance scientific computing applications on the Cell Broadband Engine processor, including molecular dynamics, quantum chromodynamics and quantum chemistry codes. The paper discusses data and code restructuring strategies necessary to adapt the applications to the intrinsic properties of the Cell processor and demonstrates performance improvements achieved on the Cell architecture. It concludes with the lessons learned and provides practical recommendations on optimization techniques that are believed to be most appropriate.


2022 ◽  
Vol 15 (1) ◽  
pp. 1-32
Author(s):  
Lana Josipović ◽  
Shabnam Sheikhha ◽  
Andrea Guerrieri ◽  
Paolo Ienne ◽  
Jordi Cortadella

Commercial high-level synthesis tools typically produce statically scheduled circuits. Yet, effective C-to-circuit conversion of arbitrary software applications calls for dataflow circuits, as they can handle efficiently variable latencies (e.g., caches), unpredictable memory dependencies, and irregular control flow. Dataflow circuits exhibit an unconventional property: registers (usually referred to as “buffers”) can be placed anywhere in the circuit without changing its semantics, in strong contrast to what happens in traditional datapaths. Yet, although functionally irrelevant, this placement has a significant impact on the circuit’s timing and throughput. In this work, we show how to strategically place buffers into a dataflow circuit to optimize its performance. Our approach extracts a set of choice-free critical loops from arbitrary dataflow circuits and relies on the theory of marked graphs to optimize the buffer placement and sizing. Our performance optimization model supports important high-level synthesis features such as pipelined computational units, units with variable latency and throughput, and if-conversion. We demonstrate the performance benefits of our approach on a set of dataflow circuits obtained from imperative code.


2021 ◽  
Author(s):  
Chris V. Pilcher

A multidisciplinary design optimization (MDO) strategy for the preliminary design of a sailplane has been developed. The proposed approach applies MDO techniques and multi-fidelity analysis methods which have seen successful use in many aerospace design applications. A customized genetic algorithm (GA) was developed to control the sailplane optimization that included aerodynamics/stability, structures/weights and balance and, performance/airworthiness disciplinary analysis modules. An adaptive meshing routine was developed to allow for accurate modeling of the aero structural couplinginvolved in wing design, which included a finite element method (FEM) structural solver along with a vortex lattice aerodynamics solver. Empirical equations were used to evaluate basic sailplane performance and airworthiness requirements. This research yielded an optimum design that correlated well with an existing high performance sailplane. The results of this thesis suggest that preliminary sailplane design is a well suited application for modern optimization techniques when coupled with, multi-fidelity analysis methods.


Author(s):  
Nadim Diab

Swarm intelligence optimization techniques are widely used in topology optimization of compliant mechanisms. The Ant Colony Optimization has been implemented in various forms to account for material density distribution inside a design domain. In this paper, the Ant Colony Optimization technique is applied in a unique manner to make it feasible to optimize for the beam elements’ cross-section and material density simultaneously. The optimum material distribution algorithm is governed by two various techniques. The first technique treats the material density as an independent design variable while the second technique correlates the material density with the pheromone intensity level. Both algorithms are tested for a micro displacement amplifier and the resulting optimized topologies are benchmarked against reported literature. The proposed techniques culminated in high performance and effective designs that surpass those presented in previous work.


1990 ◽  
Vol 112 (1) ◽  
pp. 86-93 ◽  
Author(s):  
M. R. von Spakovsky ◽  
R. B. Evans

Optimization techniques are, in general, still not used today in the design and performance analysis of thermal systems and their components. The engineer’s search for the best system configuration is based solely on rules-of-thumb and not on a systematic, analytical determination of what the optimal design or performance should be. In addition, economic factors are not directly tied to thermodynamic ones; therefore, the economic ramifications of thermodynamic changes to the system are not usually, if ever, immediately apparent. A general analytical approach that directly determines the optimum thermodynamic and econmic behavior of thermal systems is discussed and illustrated using Rankine cycles. Utilizing the Second Law and typical Second Law costing techniques, this method provides for the creation of mathematical models that balance a cycle’s operating costs and capital expenditures. Such models can be solved numerically, subject to various constraints, for the optimum design and performance of thermal systems.


Author(s):  
Gebrehiwet Gebrekrstos Lema

<p>For high performance communication systems, Side Lobe Level (SLL) reduction and improved directivity are the goal of antenna designers. In the recent years, many optimization techniques of antenna design are occupying demanding place over the analytical techniques. Though they have contributed attractive solutions, it is often obvious to select one that meets the particular design need at hand. In this paper, an optimization technique called Self-adaptive Differential Evolution (SaDE) that can be able to learn and behave intelligently along with hyper beam forming is integrated to determine an optimal set of excitation weights in the design of EcAA. Non-uniform excitation weights of the individual array elements of EcAA are performed to obtain reduced SLL, high directivity and flexible radiation pattern. To evaluate the improved performance of the proposed SaDE optimized hyper beam, comparison are done with uniformly excited, SaDE without hyper beam and Genetic Algorithm (GA). In general, the proposed work of pattern synthesis has resulted in much better reduction of SLL and FNBW than both the uniformly excited and thinned EcAA. The results of this study clearly reveal that the SLL highly reduced at a very directive beamwidth.</p>


Aerospace ◽  
2004 ◽  
Author(s):  
Tian-Bing Xu ◽  
Ji Su

An electroactive polymer-ceramic hybrid actuation system (HYBAS) was recently developed. The HYBAS demonstrates significantly-enhanced electromechanical performance by utilizing advantages of cooperative contributions of the electromechanical responses of an electrostrictive copolymer and an electroactive single crystal. The hybrid actuation system provides not only a new type of device but also a concept to utilize different electroactive materials in a cooperative and efficient method for optimized electromechanical performance. In order to develop an effective procedure to optimize the performance of a hybrid actuation system (HYBAS), a theoretical model has been developed, based on the elastic and electromechanical properties of the materials utilized in the system and on the configuration of the device. The model also evaluates performance optimization as a function of geometric parameters, including the length of the HYBAS and the thickness ratios of the constituent components. The comparison between the model and the experimental results shows a good agreement and validates the model as an effective method for the further development of high performance actuating devices or systems for various applications.


Sign in / Sign up

Export Citation Format

Share Document