Cloning and characterization of the ?-cysteine desulfhydrase gene of Fusobacterium nucleatum

2002 ◽  
Vol 215 (1) ◽  
pp. 75-80 ◽  
Author(s):  
H Fukamachi
2021 ◽  
Vol 9 (9) ◽  
pp. 1940
Author(s):  
Roquelina Pianeta ◽  
Margarita Iniesta ◽  
Diana Marcela Castillo ◽  
Gloria I. Lafaurie ◽  
Mariano Sanz ◽  
...  

The objective was to characterize and compare the subgingival microbiota in patients diagnosed according to the World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions 2018. For this cross-sectional study, Spanish and Colombian subjects (characterized as health/gingivitis, periodontitis in stages I-II or stages III-IV) were clinically assessed, and subgingival samples were taken and processed by culture. The comparisons among patients with periodontal status (and between countries) was made using Mann–Whitney, Kruskal–Wallis, ANOVA and chi-square tests. The final sample consisted of 167 subjects. Eikenella corrodens and Parvimonas micra were more frequently detected in health/gingivitis and Porphyromonas gingivalis in periodontitis (p < 0.05). Higher total counts were observed in Colombia (p = 0.036). In Spain, significantly higher levels of P. gingivalis and Campylobacter rectus were observed, and of Tannerella forsythia, P. micra, Prevotella intermedia, Fusobacterium nucleatum, Actinomyces odontolyticus and Capnocytophaga spp. in Colombia (p < 0.001). P. micra was more prevalent in health/gingivitis and stage I-II periodontitis in Colombia, and P. gingivalis in all periodontitis groups in Spain (p < 0.05). As conclusions, significant differences were detected in the microbiota between health/gingivitis and periodontitis, with minor differences between stages of periodontitis. Differences were also relevant between countries, with Colombia showing larger counts and variability of bacterial species.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e111329 ◽  
Author(s):  
Lior Doron ◽  
Shunit Coppenhagen-Glazer ◽  
Yara Ibrahim ◽  
Amir Eini ◽  
Ronit Naor ◽  
...  

2010 ◽  
Vol 173 (2) ◽  
pp. 170-174 ◽  
Author(s):  
Daniela Marciano ◽  
Marianela Santana ◽  
Brian Suárez Mantilla ◽  
Ariel Mariano Silber ◽  
Cristina Marino-Buslje ◽  
...  

2021 ◽  
Author(s):  
Manuela Salvucci ◽  
Nyree T Crawford ◽  
Katie Stott ◽  
Susan Bullman ◽  
Daniel B Longley ◽  
...  

Objective: Transcriptomic-based subtyping, Consensus Molecular Subtyping (CMS) and CRC Intrinsic Subtyping (CRIS), identify a patient subpopulation with mesenchymal traits (CMS4/CRIS-B) and poorer outcome. Here, we investigated the relationship between prevalence of Fusobacterium nucleatum (Fn) and Fusobacteriales, CMS/CRIS subtyping, cell type composition, immune infiltrates and host contexture to refine patients stratification and identify druggable context-specific vulnerabilities. Design: We coupled cell culture experiments with characterization of Fn/Fusobacteriales prevalence and host biology/microenviroment in tumours from 2 independent CRC patient cohorts (Taxonomy: n=140; TCGA-COAD-READ: n=605). Results: In vitro, Fn infection induced inflammation via NFκB/TNFα in HCT116 and HT29 cancer cell lines. In patients, high Fn/Fusobacteriales were found in CMS1, MSI tumours, with infiltration of macrophages M1, reduced macrophages M2, and high IL6/IL8/IL1β signaling. Analysis of the Taxonomy cohort suggested that Fn was prognostic for CMS4/CRIS-B patients, despite having lower Fn load than CMS1 patients. In the TCGA-COAD-READ cohort, we likewise identified a differential association between Fusobacteriales relative abundance and outcome when stratifying patients in mesenchymal (either CMS4 and/or CRIS-B) vs. non-mesenchymal (neither CMS4 nor CRIS-B). Patients with mesenchymal tumours and high Fusobacteriales had approximately 2-fold higher risk of worse outcome. These associations were null in non-mesenchymal patients. Modelling the 3-way association between Fusobacteriales prevalence, molecular subtyping, and host contexture with logistic models with an interaction term disentangled the pathogen/host-signaling relationship and identified aberrations (including EMT/WNT/NOTCH) as candidate targets. Conclusion: This study identifies CMS4/CRIS-B patients with high Fn/Fusobacteriales prevalence as a high-risk subpopulation that may benefit from therapeutics targeting mesenchymal biology.


2008 ◽  
Vol 52 (4) ◽  
pp. 1264-1268 ◽  
Author(s):  
Djalal Meziane-Cherif ◽  
Thierry Lambert ◽  
Marine Dupêchez ◽  
Patrice Courvalin ◽  
Marc Galimand

ABSTRACT Brachyspira pilosicoli BM4442, isolated from the feces of a patient with diarrhea at the Hospital Saint-Michel in Paris, was resistant to oxacillin (MIC > 256 μg/ml) but remained susceptible to cephalosporins and to the combination of amoxicillin and clavulanic acid. Cloning and sequencing of the corresponding resistance determinant revealed a coding sequence of 807 bp encoding a new class D β-lactamase named OXA-63. The bla OXA-63 gene was chromosomally located and not part of a transposon or of an integron. OXA-63 shared 54% identity with FUS-1 (OXA-85), an oxacillinase from Fusobacterium nucleatum subsp. polymorphum, and 25 to 44% identity with other class D β-lactamases (DBLs) and contained all the conserved structural motifs of DBLs. Escherichia coli carrying the bla OXA-63 gene exhibited resistance to benzylpenicillin and amoxicillin but remained susceptible to amoxicillin in combination with clavulanic acid. Mature OXA-63 consisted of a 31.5-kDa polypeptide and appeared to be dimeric. Kinetic analysis revealed that OXA-63 exhibited a narrow substrate profile, hydrolyzing oxacillin, benzylpenicillin, and ampicillin with catalytic efficiencies of 980, 250, and 150 mM−1 s−1, respectively. The enzyme did not apparently interact with oxyimino-cephalosporins, imipenem, or aztreonam. Unlike FUS-1 and other DBLs, OXA-63 was strongly inhibited by clavulanic acid (50% inhibitory concentration [IC50] of 2 μM) and tazobactam (IC50 of 0.16 μM) and exhibited low susceptibility to NaCl (IC50 of >2 M). OXA-63 is the first DBL described for the anaerobic spirochete B. pilosicoli.


Sign in / Sign up

Export Citation Format

Share Document