Evaluation of biological and epigenetic marks after exposure of MucilAir® human bronchial epithelia to mixtures of gaseous and particulate pollutants

2021 ◽  
Vol 350 ◽  
pp. S239
Author(s):  
M. Al Zallouha ◽  
P. Despréaux ◽  
A. Verdin ◽  
D. Courcot ◽  
F. Cazier ◽  
...  
Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 321-LB
Author(s):  
ANETA ALAMA ◽  
DOROTA PAWE?KA ◽  
ANETA MYSZCZYSZYN ◽  
MALGORZATA MALODOBRA-MAZUR

2021 ◽  
Vol 22 (3) ◽  
pp. 1317
Author(s):  
Hyun-Jeong Yang ◽  
Eugene Koh ◽  
Min-Kyu Sung ◽  
Hojung Kang

Studies have evidenced that epigenetic marks associated with type 2 diabetes (T2D) can be inherited from parents or acquired through fetal and early-life events, as well as through lifelong environments or lifestyles, which can increase the risk of diabetes in adulthood. However, epigenetic modifications are reversible, and can be altered through proper intervention, thus mitigating the risk factors of T2D. Mind–body intervention (MBI) refers to interventions like meditation, yoga, and qigong, which deal with both physical and mental well-being. MBI not only induces psychological changes, such as alleviation of depression, anxiety, and stress, but also physiological changes like parasympathetic activation, lower cortisol secretion, reduced inflammation, and aging rate delay, which are all risk factors for T2D. Notably, MBI has been reported to reduce blood glucose in patients with T2D. Herein, based on recent findings, we review the effects of MBI on diabetes and the mechanisms involved, including epigenetic modifications.


2021 ◽  
Vol 22 (2) ◽  
pp. 512
Author(s):  
Kateryna Fal ◽  
Denisa Tomkova ◽  
Gilles Vachon ◽  
Marie-Edith Chabouté ◽  
Alexandre Berr ◽  
...  

An ongoing challenge in functional epigenomics is to develop tools for precise manipulation of epigenetic marks. These tools would allow moving from correlation-based to causal-based findings, a necessary step to reach conclusions on mechanistic principles. In this review, we describe and discuss the advantages and limits of tools and technologies developed to impact epigenetic marks, and which could be employed to study their direct effect on nuclear and chromatin structure, on transcription, and their further genuine role in plant cell fate and development. On one hand, epigenome-wide approaches include drug inhibitors for chromatin modifiers or readers, nanobodies against histone marks or lines expressing modified histones or mutant chromatin effectors. On the other hand, locus-specific approaches consist in targeting precise regions on the chromatin, with engineered proteins able to modify epigenetic marks. Early systems use effectors in fusion with protein domains that recognize a specific DNA sequence (Zinc Finger or TALEs), while the more recent dCas9 approach operates through RNA-DNA interaction, thereby providing more flexibility and modularity for tool designs. Current developments of “second generation”, chimeric dCas9 systems, aiming at better targeting efficiency and modifier capacity have recently been tested in plants and provided promising results. Finally, recent proof-of-concept studies forecast even finer tools, such as inducible/switchable systems, that will allow temporal analyses of the molecular events that follow a change in a specific chromatin mark.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1232
Author(s):  
Sadaf Harandi-Zadeh ◽  
Cayla Boycott ◽  
Megan Beetch ◽  
Tony Yang ◽  
Benjamin J. E. Martin ◽  
...  

Epigenetic aberrations are linked to sporadic breast cancer. Interestingly, certain dietary polyphenols with anti-cancer effects, such as pterostilbene (PTS), have been shown to regulate gene expression by altering epigenetic patterns. Our group has proposed the involvement of DNA methylation and DNA methyltransferase 3B (DNMT3B) as vital players in PTS-mediated suppression of candidate oncogenes and suggested a role of enhancers as target regions. In the present study, we assess a genome-wide impact of PTS on epigenetic marks at enhancers in highly invasive MCF10CA1a breast cancer cells. Following chromatin immunoprecipitation (ChIP)-sequencing in MCF10CA1a cells treated with 7 μM PTS for 9 days, we discovered that PTS leads to increased binding of DNMT3B at enhancers of 77 genes, and 17 of those genes display an overlapping decrease in the occupancy of trimethylation at lysine 36 of histone 3 (H3K36me3), a mark of active enhancers. We selected two genes, PITPNC1 and LINC00910, and found that their enhancers are hypermethylated in response to PTS. These changes coincided with the downregulation of gene expression. Of importance, we showed that 6 out of 17 target enhancers, including PITPNC1 and LINC00910, are bound by an oncogenic transcription factor OCT1 in MCF10CA1a cells. Indeed, the six enhancers corresponded to genes with established or putative cancer-driving functions. PTS led to a decrease in OCT1 binding at those enhancers, and OCT1 depletion resulted in PITPNC1 and LINC00910 downregulation, further demonstrating a role for OCT1 in transcriptional regulation. Our findings provide novel evidence for the epigenetic regulation of enhancer regions by dietary polyphenols in breast cancer cells.


Sign in / Sign up

Export Citation Format

Share Document