Particles of residual oil fly ash(ROFA) induce toxicity and mucin hypersecretion in rodent airway epithelial cells in vitro via an oxidant-mediated mechanism

1998 ◽  
Vol 95 ◽  
pp. 224
Author(s):  
K.B. Adler ◽  
N.F. Jiang ◽  
J.A. Dye ◽  
K.L. Dreher
1996 ◽  
Vol 141 (1) ◽  
pp. 159-168 ◽  
Author(s):  
James M. Samet ◽  
William Reed ◽  
Andrew J. Ghio ◽  
Robert B. Devlin ◽  
Jacqueline D. Carter ◽  
...  

2006 ◽  
Vol 92 (1) ◽  
pp. 115-125 ◽  
Author(s):  
Marcia E. Klein-Patel ◽  
Gill Diamond ◽  
Michele Boniotto ◽  
Sherif Saad ◽  
Lisa K. Ryan

2013 ◽  
Vol 13 (4) ◽  
pp. 426-437 ◽  
Author(s):  
Travis L. Knuckles ◽  
Richard Jaskot ◽  
Judy H. Richards ◽  
C. Andrew Miller ◽  
Allen Ledbetter ◽  
...  

2000 ◽  
Vol 278 (4) ◽  
pp. L683-L695 ◽  
Author(s):  
Marga Oortgiesen ◽  
Bellina Veronesi ◽  
Gary Eichenbaum ◽  
Patrick F. Kiser ◽  
Sidney A. Simon

Residual oil fly ash (ROFA) is an industrial pollutant that contains metals, acids, and unknown materials complexed to a particulate core. The heterogeneous composition of ROFA hampers finding the mechanism(s) by which it and other particulate pollutants cause airway toxicity. To distinguish culpable factors contributing to the effects of ROFA, synthetic polymer microsphere (SPM) analogs were synthesized that resembled ROFA in particle size (2 and 6 μm in diameter) and zeta potential (−29 mV). BEAS-2B human bronchial epithelial cells and dorsal root ganglion neurons responded to both ROFA and charged SPMs with an increase in intracellular Ca2+concentration ([Ca2+]i) and the release of the proinflammatory cytokine interleukin-6, whereas neutral SPMs bound with polyethylene glycol (0-mV zeta potential) were relatively ineffective. In dorsal root ganglion neurons, the SPM-induced increases in [Ca2+]iwere correlated with the presence of acid- and/or capsaicin-sensitive pathways. We hypothesized that the acidic microenvironment associated with negatively charged colloids like ROFA and SPMs activate irritant receptors in airway target cells. This causes subsequent cytokine release, which mediates the pathophysiology of neurogenic airway inflammation.


1999 ◽  
Vol 276 (6) ◽  
pp. L933-L940 ◽  
Author(s):  
Andrew J. Ghio ◽  
Jacqueline D. Carter ◽  
Lisa A. Dailey ◽  
Robert B. Devlin ◽  
James M. Samet

Human airway epithelial cells can increase expression of both lactoferrin and ferritin after exposure to catalytically active metal. These proteins transport and store metal, with coordination sites fully complexed, and therefore can diminish the oxidative stress. The intracellular transport of lactoferrin results in a transfer of complexed metal to ferritin, where it is stored in a less reactive form. This effort to control the injurious properties of metals would be facilitated by lactoferrin receptors (LfRs) on airway epithelial cells. We tested the hypotheses that 1) LfRs exist on respiratory epithelial cells and 2) exposure to both an air pollution particle, which has abundant concentrations of metals, and individual metal salts increase the expression of LfRs. Before exposure to either the particle or metals, incubation of BEAS-2B cells with varying concentrations of125I-labeled lactoferrin demonstrated lactoferrin binding that was saturable. Measurement of125I-lactoferrin binding after the inclusion of 100 μg/ml of oil fly ash in the incubation medium demonstrated increased binding within 5 min of exposure, which reached a maximal value at 45 min. Inclusion of 1.0 mM deferoxamine in the incubation of BEAS-2B cells with 100 μg/ml of oil fly ash decreased lactoferrin binding. Comparable to the particle, exposure of BEAS-2B cells to either 1.0 mM vanadyl sulfate or 1.0 mM iron (III) sulfate, but not to nickel sulfate, for 45 min elevated LfR activity. We conclude that LfRs on respiratory epithelial cells increased after exposure to metal. LfRs could participate in decreasing the oxidative stress presented to the lower respiratory tract by complexing catalytically active metals.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 509 ◽  
Author(s):  
Meenakshi Tiwary ◽  
Robert J. Rooney ◽  
Swantje Liedmann ◽  
Kim S. LeMessurier ◽  
Amali E. Samarasinghe

Eosinophils, previously considered terminally differentiated effector cells, have multifaceted functions in tissues. We previously found that allergic mice with eosinophil-rich inflammation were protected from severe influenza and discovered specialized antiviral effector functions for eosinophils including promoting cellular immunity during influenza. In this study, we hypothesized that eosinophil responses during the early phase of influenza contribute to host protection. Using in vitro and in vivo models, we found that eosinophils were rapidly and dynamically regulated upon influenza A virus (IAV) exposure to gain migratory capabilities to traffic to lymphoid organs after pulmonary infection. Eosinophils were capable of neutralizing virus upon contact and combinations of eosinophil granule proteins reduced virus infectivity through hemagglutinin inactivation. Bi-directional crosstalk between IAV-exposed epithelial cells and eosinophils occurred after IAV infection and cross-regulation promoted barrier responses to improve antiviral defenses in airway epithelial cells. Direct interactions between eosinophils and airway epithelial cells after IAV infection prevented virus-induced cytopathology in airway epithelial cells in vitro, and eosinophil recipient IAV-infected mice also maintained normal airway epithelial cell morphology. Our data suggest that eosinophils are important in the early phase of IAV infection providing immediate protection to the epithelial barrier until adaptive immune responses are deployed during influenza.


2018 ◽  
Vol 112 ◽  
pp. 163-168 ◽  
Author(s):  
Cynthia M. Schwartz ◽  
Braedyn A. Dorn ◽  
Selam Habtemariam ◽  
Cynthia L. Hill ◽  
Tendy Chiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document