scholarly journals Chern-Simons gauge theory on orbifolds: Open strings from three dimensions

1996 ◽  
Vol 21 (1) ◽  
pp. 1-33 ◽  
Author(s):  
Petr Hořava
2004 ◽  
Vol 19 (22) ◽  
pp. 1695-1700 ◽  
Author(s):  
PATRICIO GAETE

For a recently proposed pure gauge theory in three dimensions, without a Chern–Simons term, we calculate the static interaction potential within the structure of the gauge-invariant variables formalism. As a consequence, a confining potential is obtained. This result displays a marked qualitative departure from the usual Maxwell–Chern–Simons theory.


1990 ◽  
Vol 05 (21) ◽  
pp. 1663-1670 ◽  
Author(s):  
Y. IGARASHI ◽  
H. IMAI ◽  
S. KITAKADO ◽  
J. KUBO ◽  
H. SO

We quantize non-abelian gauge theory with only a Chern-Simons term in three dimensions by using the generalized Hamiltonian formalism of Batalin and Fradkin for irreducible first-and second-class constrained systems, and derive a covariant action for the theory which is invariant under the off-shell nilpotent BRST transformation. Some aspects of the theory, finiteness and supersymmetry are discussed.


2003 ◽  
Vol 18 (15) ◽  
pp. 2689-2702 ◽  
Author(s):  
NORIAKI IKEDA

We couple three-dimensional Chern–Simons gauge theory with BF theory and study deformations of the theory by means of the antifield BRST formalism. We analyze all possible consistent interaction terms for the action under physical requirements and find a new topological field theory in three dimensions with new nontrivial terms and a nontrivial gauge symmetry. We analyze the gauge symmetry of the theory and point out the theory that has the gauge symmetry based on the Courant algebroid.


1990 ◽  
Vol 05 (12) ◽  
pp. 935-941 ◽  
Author(s):  
K. KOEHLER ◽  
F. MANSOURI ◽  
CENALO VAZ ◽  
L. WITTEN

We construct a de Sitter supergravity theory in 2 + 1 dimensions as the Chern-Simons gauge theory of the supergroup OSp (1|2; C). The resulting action is a consistent classical supergravity theory with a positive cosmological constant. As in other three dimensional Chern-Simons theories, diffeomorphisms are shown to be equivalent to gauge transformations of OSp (1|2; C) on shell. Consistency of the corresponding classical theory is briefly discussed.


1991 ◽  
Vol 06 (39) ◽  
pp. 3591-3600 ◽  
Author(s):  
HIROSI OOGURI ◽  
NAOKI SASAKURA

It is shown that, in the three-dimensional lattice gravity defined by Ponzano and Regge, the space of physical states is isomorphic to the space of gauge-invariant functions on the moduli space of flat SU(2) connections over a two-dimensional surface, which gives physical states in the ISO(3) Chern–Simons gauge theory. To prove this, we employ the q-analogue of this model defined by Turaev and Viro as a regularization to sum over states. A recent work by Turaev suggests that the q-analogue model itself may be related to an Euclidean gravity with a cosmological constant proportional to 1/k2, where q=e2πi/(k+2).


1990 ◽  
Vol 05 (16) ◽  
pp. 1251-1258 ◽  
Author(s):  
NOUREDDINE MOHAMMEDI

We find the relationship between the Jackiw-Teitelboim model of two-dimensional gravity and the SL (2, R) induced gravity. These are shown to be related to a two-dimensional gauge theory obtained by dimensionally reducing the Chern-Simons action of the 2+1 dimensional gravity. We present an explicit solution to the equations of motion of the auxiliary field of the Jackiw-Teitelboim model in the light-cone gauge. A renormalization of the cosmological constant is also given.


2011 ◽  
Vol 26 (37) ◽  
pp. 2813-2821
Author(s):  
PATRICIO GAETE

We consider the static quantum potential for a gauge theory which includes a light massive vector field interacting with the familiar U (1) QED photon via a Chern–Simons-like coupling, by using the gauge-invariant, but path-dependent, variables formalism. An exactly screening phase is then obtained, which displays a marked departure of a qualitative nature from massive axionic electrodynamics. The above static potential profile is similar to that encountered in axionic electrodynamics consisting of a massless axion-like field, as well as to that encountered in the coupling between the familiar U (1) QED photon and a second massive gauge field living in the so-called U (1)h hidden-sector, inside a superconducting box.


Author(s):  
SERGEI GUKOV ◽  
EMIL MARTINEC ◽  
GREGORY MOORE ◽  
ANDREW STROMINGER
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document