scholarly journals Meron-cluster simulation of a chiral phase transition with staggered fermions

2000 ◽  
Vol 576 (1-3) ◽  
pp. 481-500 ◽  
Author(s):  
S. Chandrasekharan ◽  
J. Cox ◽  
K. Holland ◽  
U.-J. Wiese
2018 ◽  
Vol 175 ◽  
pp. 07041 ◽  
Author(s):  
Akio Tomiya ◽  
Heng-Tong Ding ◽  
Swagato Mukherjee ◽  
Christian Schmidt ◽  
Xiao-Dan Wang

Lattice simulations for (2+1)-flavor QCD with external magnetic field demon-strated that the quark mass is one of the important parameters responsible for the (inverse) magnetic catalysis. We discuss the dependences of chiral condensates and susceptibilities, the Polyakov loop on the magnetic field and quark mass in three degenerate flavor QCD. The lattice simulations are performed using standard staggered fermions and the plaquette action with spatial sizes Nσ = 16 and 24 and a fixed temporal size Nτ = 4. The value of the quark masses are chosen such that the system undergoes a first order chiral phase transition and crossover with zero magnetic field. We find that in light mass regime, the quark chiral condensate undergoes magnetic catalysis in the whole temperature region and the phase transition tend to become stronger as the magnetic field increases. In crossover regime, deconfinement transition temperature is shifted by the magnetic field when quark mass ma is less than 0:4. The lattice cutoff effects are also discussed.


2018 ◽  
Vol 175 ◽  
pp. 07032 ◽  
Author(s):  
Francesca Cuteri ◽  
Christopher Czaban ◽  
Owe Philipsen ◽  
Alessandro Sciarra

We report on the status of ongoing investigations aiming at locating the deconfinement critical point with standard Wilson fermions and Nf = 2 flavors towards the continuum limit (standard Columbia plot); locating the tricritical masses at imaginary chemical potential with unimproved staggered fermions at Nf = 2 (extended Columbia plot); identifying the order of the chiral phase transition at μ = 0 for Nf = 2 via extrapolation from non integer Nf (alternative Columbia plot).


2020 ◽  
Vol 102 (11) ◽  
Author(s):  
Paolo Castorina ◽  
Daniele Lanteri ◽  
Marco Ruggieri

1994 ◽  
Vol 34 ◽  
pp. 289-291
Author(s):  
G. Boyd ◽  
S. Gupta ◽  
F. Karsch ◽  
E. Laermann

1994 ◽  
Vol 34 ◽  
pp. 292-294 ◽  
Author(s):  
E. Laermann ◽  
G. Boyd ◽  
S. Gupta ◽  
F. Karsch ◽  
B. Petersson ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
Abdel Nasser Tawfik ◽  
Niseem Magdy

Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model and Polyakov linear sigma-model (PLSM) has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM) a gluonic sector is integrated into LSM. The hadron resonance gas (HRG) model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.


2019 ◽  
Vol 34 (01) ◽  
pp. 1950003
Author(s):  
Yu-Qiang Cui ◽  
Zhong-Liang Pan

We investigate the finite-temperature and zero quark chemical potential QCD chiral phase transition of strongly interacting matter within the two-flavor Nambu–Jona-Lasinio (NJL) model as well as the proper time regularization. We use two different regularization processes, as discussed in Refs. 36 and 37, separately, to discuss how the effective mass M varies with the temperature T. Based on the calculation, we find that the M of both regularization schemes decreases when T increases. However, for three different parameter sets, quite different behaviors will show up. The results obtained by the method in Ref. 36 are very close to each other, but those in Ref. 37 are getting farther and farther from each other. This means that although the method in Ref. 37 seems physically more reasonable, it loses the advantage in Ref. 36 of a small parameter dependence. In addition, we also, find that two regularization schemes provide similar results when T [Formula: see text] 100 MeV, while when T is larger than 100 MeV, the difference becomes obvious: the M calculated by the method in Ref. 36 decreases more rapidly than that in Ref. 37.


Sign in / Sign up

Export Citation Format

Share Document