Stochastic effects on single phase fluid flow in porous media

2001 ◽  
Vol 19 (3-4) ◽  
pp. 333-337 ◽  
Author(s):  
P. Mansfield ◽  
M. Bencsik
2010 ◽  
Vol 13 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Zeyun Jiang ◽  
Kejian Wu ◽  
Gary D. Couples ◽  
Jingsheng Ma

2020 ◽  
Vol 400 ◽  
pp. 38-44
Author(s):  
Hassan Soleimani ◽  
Hassan Ali ◽  
Noorhana Yahya ◽  
Beh Hoe Guan ◽  
Maziyar Sabet ◽  
...  

This article studies the combined effect of spatial heterogeneity and capillary pressure on the saturation of two fluids during the injection of immiscible nanoparticles. Various literature review exhibited that the nanoparticles are helpful in enhancing the oil recovery by varying several mechanisms, like wettability alteration, interfacial tension, disjoining pressure and mobility control. Multiphase modelling of fluids in porous media comprise balance equation formulation, and constitutive relations for both interphase mass transfer and pressure saturation curves. A classical equation of advection-dispersion is normally used to simulate the fluid flow in porous media, but this equation is unable to simulate nanoparticles flow due to the adsorption effect which happens. Several modifications on computational fluid dynamics (CFD) have been made to increase the number of unknown variables. The simulation results indicated the successful transportation of nanoparticles in two phase fluid flow in porous medium which helps in decreasing the wettability of rocks and hence increasing the oil recovery. The saturation, permeability and capillary pressure curves show that the wettability of the rocks increases with the increasing saturation of wetting phase (brine).


Author(s):  
Hongsen Chen ◽  
Richard E. Ewing ◽  
Stephen L. Lyons ◽  
Guan Qin ◽  
Tong Sun ◽  
...  

Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 588-601 ◽  
Author(s):  
Yi Wang ◽  
Bo Yu ◽  
Shuyu Sun

AbstractFast prediction modeling via proper orthogonal decomposition method combined with Galerkin projection is applied to incompressible single-phase fluid flow in porous media. Cases for different configurations of porous media, boundary conditions and problem scales are designed to examine the fidelity and robustness of the model. High precision (relative deviation 1.0 × 10−4% ~ 2.3 × 10−1%) and large acceleration (speed-up 880 ~ 98454 times) of POD model are found in these cases. Moreover, the computational time of POD model is quite insensitive to the complexity of problems. These results indicate POD model is especially suitable for large-scale complex problems in engineering.


2019 ◽  
Vol 131 (2) ◽  
pp. 449-472 ◽  
Author(s):  
Jingtao Zhang ◽  
Haipeng Zhang ◽  
Donghee Lee ◽  
Sangjin Ryu ◽  
Seunghee Kim

Sign in / Sign up

Export Citation Format

Share Document