Some insights into the use of pore network simulations for predicting single-phase fluid flow in model porous media

2021 ◽  
Vol 25 (7) ◽  
Author(s):  
Hadi Adloo ◽  
Behnam Abbasi
Author(s):  
Hongsen Chen ◽  
Richard E. Ewing ◽  
Stephen L. Lyons ◽  
Guan Qin ◽  
Tong Sun ◽  
...  

2010 ◽  
Vol 13 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Zeyun Jiang ◽  
Kejian Wu ◽  
Gary D. Couples ◽  
Jingsheng Ma

Author(s):  
Haipeng Zhang ◽  
Tomer Palmon ◽  
Seunghee Kim ◽  
Sangjin Ryu

Abstract Porous media compressed air energy storage (PM-CAES) is an emerging technology that stores compressed air in an underground aquifer during the off-peak periods, to mitigate the mismatch between energy supplies and demands. Thus, PM-CAES involves repeated two-phase fluid flow in porous media, and ensuring the success of PM-CAES requires a better understanding of repetitive two-phase fluid flow through porous media. For this purpose, we previously developed microfluidic channels that retain a two-dimensional (2D) pore network. Because it was found that the geometry of the pore structure significantly affects the patterns and occupational efficiencies of a non-wetting fluid during the drainage-imbibition cycles, a more realistic microfluidic model is needed to reflect the three-dimensional (3D) nature of pore structures in the underground geologic formation. In this study, we developed an easy-to-adopt method to fabricate a microfluidic device with a 3D random pore network using a sacrificial sugar template. Instead of using a master mold made in photolithography, a sacrificial mold was made using sugar grains so that the mold could be washed away after PDMS curing. First, we made sugar templates with different levels of compaction load, and found that the thickness of the templates decreased as the compaction load increased, which suggests more packing of sugar grains and thus lower porosity in the template. Second, we fabricated PDMS porous media using the sugar template as a mold, and imaged their pore structure using micro computed tomography (micro-CT). Pores within PDSM samples appeared more tightly packed as the compacting force increased. Last, we fabricated a prototype PDMS channel device with a 3D pore network using a sugar template, and visualized flow through the pore network using colored water. The flow visualization result shows that the water was guided by the random pores and that the resultant flow pattern was three dimensional.


Author(s):  
Yahya Jirjees Tawfeeq

The complexity of porous media makes the classical methods used to study hydrocarbon reservoirs inaccurate and insufficient to predict the performance and behavior of the reservoir. Recently, fluid flow simulation and modeling used to decrease the risks in the decision of the evaluation of the reservoir and achieve the best possible economic feasibility. This study deals with a brief review of the fundamental equations required to simulate fluid flow through porous media. In this study, we review the derivative of partial differential equations governing the fluid flow through pores media. The physical interpretation of partial differential equations (especially the pressures diffusive nature) and discretization with finite differences are studied.  We restricted theoretic research to slightly compressible fluids, single-phase flow through porous media, and these are sufficient to show various typical aspects of subsurface flow numerical simulation. Moreover, only spatial and time discretization with finite differences will be considered. In this study, a mathematical model is formulated to express single-phase fluid flow in a one-dimensional porous medium. The formulated mathematical model is a partial differential equation of pressure change concerning distance and time.  Then this mathematical model converted into a numerical model using the finite differences method.


1994 ◽  
Vol 10 (5) ◽  
pp. 569-580 ◽  
Author(s):  
Leonid Knizhnerman ◽  
Vladimir Druskin ◽  
Qing-Huo Liu ◽  
Fikri J. Kuchuk

Poromechanics ◽  
2020 ◽  
pp. 333-338
Author(s):  
M. Bai ◽  
F. Meng ◽  
J.-C. Roegiers ◽  
Y. Abousleiman

Sign in / Sign up

Export Citation Format

Share Document