The effect of the Rht1 gene on grain protein content in tetraploid wheat Triticum turgidum

1987 ◽  
Vol 6 (1) ◽  
pp. 27-32 ◽  
Author(s):  
Michele Zaccai ◽  
M.J. Pinthus ◽  
A.A. Levy
Author(s):  
Anteneh Agezew Melash

This review work aims to evaluate the factors affecting the storage grain protein content of tetraploid Wheat (Triticum turgidum L.) and their management. For commercial production of tetraploid wheat, grain protein content is considered very important. As the grain receive great market attention due to protein premium price paid for farmers, mainly above 13% that will give about 12% of protein in the milled semolina. However, this review state that grain protein content of tetraploid wheat is sensitive to environmental conditions prevailing before and during grain filling, crop genetics and cultural practices. This and associated problems universally call agronomic based alternative solution to ameliorate protein concentration in durum wheat grain. This could be modified through manipulating seeding rates, selection crop varieties, adjusting nitrogen amount and fertilization time and sowing date. The decision of time of nitrogen application however should be made based on the interest of the farmers. If the interest gears towards grain yield, apply nitrogen early in the season and apply the fertilizer later if heading for better protein concentration.


Crop Science ◽  
2000 ◽  
Vol 40 (2) ◽  
pp. 518-524 ◽  
Author(s):  
I. A. Khan ◽  
J. D. Procunier ◽  
D. G. Humphreys ◽  
G. Tranquilli ◽  
A. R. Schlatter ◽  
...  

2000 ◽  
Vol 51 (6) ◽  
pp. 665 ◽  
Author(s):  
M Koç ◽  
C. Barutçular ◽  
N. Zencirci

High grain protein in durum wheat [Triticum turgidum ssp. turgidum L. conv. Durum (Desf.)] is one of the main goals of breeding programs. Landraces may be very useful germplasm for achieving this goal. To examine their potential as a source of high grain protein content, 11 genotypes, including 7 landraces, were evaluated in 8 environments. Environment, genotype, and the interaction of the two (G E) significantly influenced the variation in grain yield, grain protein content, and grain protein yield. The environmental effect was the strongest, mostly due to differences in water supply. Grain yields of the modern genotypes were higher than those of landraces. Yields of the modern genotypes tended to respond more strongly to the higher yielding environments, but they varied more than the yields of landraces. With the exception of VK.85.18, the grain protein content of the high-yielding genotypes was almost as high as that of the best landraces. Moreover, grain protein content of these bred genotypes tended to respond more strongly to the higher protein environments. Differences in grain protein yield were closely related to the differences in grain yield. The results indicate that it is possible to improve grain protein content without grain yield being adversely affected. The results also indicate that potential gene sources should be compared over a number of environments before they can be used as breeding material or as crop varieties producing high grain protein yields.


2006 ◽  
Vol 1 (4) ◽  
pp. 378-382 ◽  
Author(s):  
Wei Li ◽  
Yu-Ming Wei . ◽  
Ze-Hong Yan . ◽  
You-Liang Zheng .

Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2845
Author(s):  
Pablo F. Roncallo ◽  
Carlos Guzmán ◽  
Adelina O. Larsen ◽  
Ana L. Achilli ◽  
Susanne Dreisigacker ◽  
...  

Durum wheat grains (Triticum turgidum L. ssp. durum) are the main source for the production of pasta, bread and a variety of products consumed worldwide. The quality of pasta is mainly defined by the rheological properties of gluten, an elastic network in wheat endosperms formed of gliadins and glutenins. In this study, the allelic variation at five glutenin loci was analysed in 196 durum wheat genotypes. Two loci (Glu-A1 and Glu-B1), encoding for high-molecular-weight glutenin subunits (HMW-GS), and three loci (Glu-B2, Glu-A3 and Glu-B3), encoding for low molecular weight glutenin subunits (LMW-GS), were assessed by SDS-PAGE. The SDS-sedimentation test was used and the grain protein content was evaluated. A total of 32 glutenin subunits and 41 glutenin haplotypes were identified. Four novel alleles were detected. Fifteen haplotypes represented 85.7% of glutenin loci variability. Some haplotypes carrying the 7 + 15 and 7 + 22 banding patterns at Glu-B1 showed a high gluten strength similar to those that carried the 7 + 8 or 6 + 8 alleles. A decreasing trend in grain protein content was observed over the last 85 years. Allelic frequencies at the three main loci (Glu-B1, Glu-A3 and Glu-B3) changed over the 1915–2020 period. Gluten strength increased from 1970 to 2020 coinciding with the allelic changes observed. These results offer valuable information for glutenin haplotype-based selection for use in breeding programs.


2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Saule Kenzhebayeva ◽  
Alfia Abekova ◽  
Saule Atabayeva ◽  
Gulzira Yernazarova ◽  
Nargul Omirbekova ◽  
...  

Deficiency of metals, primarily Fe and Zn, affects over half of the world’s population. Human diets dominated by cereal products cause micronutrient malnutrition, which is common in many developing countries where populations depend heavily on staple grain crops such as wheat, maize, and rice. Biofortification is one of the most effective approaches to alleviate malnutrition. Genetically stable mutant spring wheat lines (M7 generation) produced via 100 or 200 Gy gamma treatments to broaden genetic variation for grain nutrients were analyzed for nutritionally important minerals (Ca, Fe, and Zn), their bioavailability, and grain protein content (GPC). Variation was 172.3–883.0 mg/kg for Ca, 40.9–89.0 mg/kg for Fe, and 22.2–89.6 mg/kg for Zn. In mutant lines, among the investigated minerals, the highest increases in concentrations were observed in Fe, Zn, and Ca when compared to the parental cultivar Zhenis. Some mutant lines, mostly in the 100 Gy-derived germplasm, had more than two-fold higher Fe, Zn, and Ca concentrations, lower phytic acid concentration (1.4–2.1-fold), and 6.5–7% higher grain protein content compared to the parent. Variation was detected for the molar ratios of Ca:Phy, Phy:Fe, and Phy:Zn (1.27–10.41, 1.40–5.32, and 1.78–11.78, respectively). The results of this study show how genetic variation generated through radiation can be useful to achieve nutrient biofortification of crops to overcome human malnutrition.


Author(s):  
Isaiah O. Ochieng’ ◽  
Harun I. Gitari ◽  
Benson Mochoge ◽  
Esmaeil Rezaei-Chiyaneh ◽  
Joseph P. Gweyi-Onyango

Sign in / Sign up

Export Citation Format

Share Document