scholarly journals Factors Affecting the Storage Grain Protein Content of Tetraploid Wheat (Triticum turgidum L.) and Their Management

Author(s):  
Anteneh Agezew Melash

This review work aims to evaluate the factors affecting the storage grain protein content of tetraploid Wheat (Triticum turgidum L.) and their management. For commercial production of tetraploid wheat, grain protein content is considered very important. As the grain receive great market attention due to protein premium price paid for farmers, mainly above 13% that will give about 12% of protein in the milled semolina. However, this review state that grain protein content of tetraploid wheat is sensitive to environmental conditions prevailing before and during grain filling, crop genetics and cultural practices. This and associated problems universally call agronomic based alternative solution to ameliorate protein concentration in durum wheat grain. This could be modified through manipulating seeding rates, selection crop varieties, adjusting nitrogen amount and fertilization time and sowing date. The decision of time of nitrogen application however should be made based on the interest of the farmers. If the interest gears towards grain yield, apply nitrogen early in the season and apply the fertilizer later if heading for better protein concentration.

1994 ◽  
Vol 21 (6) ◽  
pp. 869 ◽  
Author(s):  
R Correll ◽  
J Butler ◽  
L Spouncer ◽  
C Wrigley

This paper compares the relationship between temperatures at grain filling and grain-protein content for wheat and barley. Two similar statistical models have been developed using historical grain and climate data to reliably predict the protein content of wheat and barley at grain receival sites. Protein levels were predicted using multiple regressions with the same regression coefficients for all sites. The locality effect is absorbed in the regression intercept derived for each site. Australian Standard White (ASW) wheat data for 109 silos throughout South Australia for the years 1971-1991 were analysed in relation to rainfall and temperatures at the closest weather station. Rainfall from May to September was associated with a decrease in ASW wheat grain protein, and more importantly, the number of days in October above 30�C were positively associated with an increase in wheat grain-protein levels. Analysis of protein data from malting varieties of barley (1982-1991) from 160 South Australian hundreds (districts of about 260 km2) again showed that increased rainfall between July and September was associated with decreased grain protein. However, the dominating influence was the number of days in a row in November above 35�C, which was consistently associated with increased grain protein. This makes an interesting comparison with wheat where October temperatures were more important despite barley being harvested earlier than wheat.


Crop Science ◽  
2000 ◽  
Vol 40 (2) ◽  
pp. 518-524 ◽  
Author(s):  
I. A. Khan ◽  
J. D. Procunier ◽  
D. G. Humphreys ◽  
G. Tranquilli ◽  
A. R. Schlatter ◽  
...  

1984 ◽  
Vol 64 (4) ◽  
pp. 797-804
Author(s):  
CHRISTIANAH O. AJAKAIYE

The changes which occurred in grain protein content with maturity of three sorghum (Sorghum bicolor (L.) Moench) genotypes were investigated at four nitrogen (N) application levels, 0, 35, 70 and 140 kg/ha. Three sorghum genotypes (RCFA × L.187, L.187 and SK 5912) were field-grown at Samaru, Zaria, Nigeria. Grain was sampled at 10, 17, 24 and 67 days after anthesis and grain protein was determined by Kjeldahl methods. The concentration of grain protein of RCFA × L.187 and L.187 increased up to 24 days after anthesis with a peak at 17 days after anthesis in 1977 while in SK 5912, the highest concentration was at 10 days after anthesis in that year. In 1978, the concentration trend was similar to that in 1977 but the behavior of SK 5912 was erratic because an increase in grain protein concentration occurred at 17 days after anthesis only in plants grown on soil supplied with 35 and 70 kg N/ha. In all other treatments, the grain protein concentration of this genotype decreased from 10 to 67 days after anthesis. However, total grain protein yield per hectare increased significantly in all genotypes at harvest over that at 10 days after anthesis.Key words: Sorghum bicolor (L.) Moench, protein content, genotypes, maturity


2021 ◽  
Author(s):  
Peng Jiang ◽  
Peng Zhang ◽  
Lei Wu ◽  
Yi He ◽  
Chang Li ◽  
...  

Abstract Wheat grain protein content (GPC) is an important quality indicator. The GPC of wheat grown in the middle and lower reaches of the Yangtze River is often low. Marker-assisted selection (MAS) is an effective tool for improving quantitative traits; however, except Gpc-B1, most markers have not been effectively applied in GPC improvement, although many related loci have been identified. Linkage analysis using a recombinant inbred line population from the cross of core parents of Ningmai 9 and Yangmai 158 and association mapping using the local cultivated varieties were performed and nine candidate intervals were identified. The appropriate kompetitive allele specific PCR (KASP) markers associated with GPC were successfully developed and applied in 1163 F4 breeding lines. Three markers, Kgpc-2B, Kgpc-2D, and Kgpc-4A, were validated to be significantly related to GPC by large-scale association mapping, and they were combined to achieve the highest efficiency to enhance GPC. We applied these markers in 164 F6 breeding lines and obtained 15 lines with high GPC, indicating their high selective efficiency. Further, strategies for gene exploration in the three significant intervals were proposed. These results were expected to provide a novel route for improving GPC in wheat quality breeding.


2000 ◽  
Vol 51 (6) ◽  
pp. 665 ◽  
Author(s):  
M Koç ◽  
C. Barutçular ◽  
N. Zencirci

High grain protein in durum wheat [Triticum turgidum ssp. turgidum L. conv. Durum (Desf.)] is one of the main goals of breeding programs. Landraces may be very useful germplasm for achieving this goal. To examine their potential as a source of high grain protein content, 11 genotypes, including 7 landraces, were evaluated in 8 environments. Environment, genotype, and the interaction of the two (G E) significantly influenced the variation in grain yield, grain protein content, and grain protein yield. The environmental effect was the strongest, mostly due to differences in water supply. Grain yields of the modern genotypes were higher than those of landraces. Yields of the modern genotypes tended to respond more strongly to the higher yielding environments, but they varied more than the yields of landraces. With the exception of VK.85.18, the grain protein content of the high-yielding genotypes was almost as high as that of the best landraces. Moreover, grain protein content of these bred genotypes tended to respond more strongly to the higher protein environments. Differences in grain protein yield were closely related to the differences in grain yield. The results indicate that it is possible to improve grain protein content without grain yield being adversely affected. The results also indicate that potential gene sources should be compared over a number of environments before they can be used as breeding material or as crop varieties producing high grain protein yields.


2016 ◽  
Vol 45 (s1) ◽  
pp. 123002
Author(s):  
吴静珠 Wu Jingzhu ◽  
刘 倩 Liu Qian ◽  
陈 岩 Chen Yan ◽  
刘翠玲 Liu Cuiling

2018 ◽  
Vol 10 (6) ◽  
pp. 930 ◽  
Author(s):  
Francelino A. Rodrigues ◽  
Gerald Blasch ◽  
Pierre BlasDefournych ◽  
J. Ivan Ortiz-Monasterio ◽  
Urs Schulthess ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document