scholarly journals SURFACE ECG-BASED MACHINE LEARNING MODEL FOR PREDICTING PATIENT SUBGROUP AT A HIGH RISK FOR MAJOR ADVERSE CARDIAC EVENTS

2021 ◽  
Vol 77 (18) ◽  
pp. 3227
Author(s):  
Heenaben Patel ◽  
Naveena Yanamala ◽  
Marton Tokodi ◽  
Nobuyaki Kagiyama ◽  
Marco Piccirilli ◽  
...  
2021 ◽  
Author(s):  
Chris J. Kennedy ◽  
Dustin G. Mark ◽  
Jie Huang ◽  
Mark J. van der Laan ◽  
Alan E. Hubbard ◽  
...  

Background: Chest pain is the second leading reason for emergency department (ED) visits and is commonly identified as a leading driver of low-value health care. Accurate identification of patients at low risk of major adverse cardiac events (MACE) is important to improve resource allocation and reduce over-treatment. Objectives: We sought to assess machine learning (ML) methods and electronic health record (EHR) covariate collection for MACE prediction. We aimed to maximize the pool of low-risk patients that are accurately predicted to have less than 0.5% MACE risk and may be eligible for reduced testing. Population Studied: 116,764 adult patients presenting with chest pain in the ED and evaluated for potential acute coronary syndrome (ACS). 60-day MACE rate was 1.9%. Methods: We evaluated ML algorithms (lasso, splines, random forest, extreme gradient boosting, Bayesian additive regression trees) and SuperLearner stacked ensembling. We tuned ML hyperparameters through nested ensembling, and imputed missing values with generalized low-rank models (GLRM). We benchmarked performance to key biomarkers, validated clinical risk scores, decision trees, and logistic regression. We explained the models through variable importance ranking and accumulated local effect visualization. Results: The best discrimination (area under the precision-recall [PR-AUC] and receiver operating characteristic [ROC-AUC] curves) was provided by SuperLearner ensembling (0.148, 0.867), followed by random forest (0.146, 0.862). Logistic regression (0.120, 0.842) and decision trees (0.094, 0.805) exhibited worse discrimination, as did risk scores [HEART (0.064, 0.765), EDACS (0.046, 0.733)] and biomarkers [serum troponin level (0.064, 0.708), electrocardiography (0.047, 0.686)]. The ensemble's risk estimates were miscalibrated by 0.2 percentage points. The ensemble accurately identified 50% of patients to be below a 0.5% 60-day MACE risk threshold. The most important predictors were age, peak troponin, HEART score, EDACS score, and electrocardiogram. GLRM imputation achieved 90% reduction in root mean-squared error compared to median-mode imputation. Conclusion: Use of ML algorithms, combined with broad predictor sets, improved MACE risk prediction compared to simpler alternatives, while providing calibrated predictions and interpretability. Standard risk scores may neglect important health information available in other characteristics and combined in nuanced ways via ML.


Stroke ◽  
2021 ◽  
Vol 52 (Suppl_1) ◽  
Author(s):  
Lingling Ding ◽  
Zixiao Li ◽  
Yongjun Wang

Objective: We aimed to develop and validate a machine learning-based prediction model that could assess the risk of stroke-associated pneumonia (SAP) for individual patients with acute ischemic stroke (AIS). Methods: A machine-learning model incorporating A 2 DS 2 scores and clinical features (AN-ADCS 2 ) was developed to predict the risk of SAP in patients with AIS. Two independent datasets were used for model derivation and external validation. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were estimated. The further analysis evaluated thresholds from the training set that identified patients as low-risk, intermediate-risk and high-risk, and performance at these thresholds was compared in the external validation set. Results: The AN-ADCS 2 model achieved favorable performance with a high AUC of 0.892 (95% confidence interval [CI] 0.885-0.898) in the test set and similar performance in the external validation set (AUC 0.813 [95% CI 0.812-0.814]). The AN-ADCS 2 threshold identifying low-risk was 0.03, with a NPV of 97.6% (97.2-97.9%) and sensitivity of 93.5% (92.5-94.5%). The AN-ADCS 2 threshold identifying high-risk was 0.65, with a PPV of 94.7% (93.9-95.6%) and specificity of 99.5% (99.5-99.6%). The AN-ADCS 2 model performed better than the A 2 DS 2 score (AUC 0.739, 95%CI [0.720-0.754]). Having a high risk of SAP classified by the AN-ADCS 2 was associated with unfavorable outcomes of mortality and in-hospital stroke recurrence. Conclusions: Using machine learning, the AN-ADCS 2 model provides an individualized risk prediction of SAP, which can be used as an indicator of clinical prognosis for patients with AIS.


Radiology ◽  
2018 ◽  
Vol 286 (3) ◽  
pp. 810-818 ◽  
Author(s):  
Manisha Bahl ◽  
Regina Barzilay ◽  
Adam B. Yedidia ◽  
Nicholas J. Locascio ◽  
Lili Yu ◽  
...  

Buildings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 172
Author(s):  
Debalina Banerjee Chattapadhyay ◽  
Jagadeesh Putta ◽  
Rama Mohan Rao P

Risk identification and management are the two most important parts of construction project management. Better risk management can help in determining the future consequences, but identifying possible risk factors has a direct and indirect impact on the risk management process. In this paper, a risk prediction system based on a cross analytical-machine learning model was developed for construction megaprojects. A total of 63 risk factors pertaining to the cost, time, quality, and scope of the megaproject and primary data were collected from industry experts on a five-point Likert scale. The obtained sample was further processed statistically to generate a significantly large set of features to perform K-means clustering based on high-risk factor and allied sub-risk component identification. Descriptive analysis, followed by the synthetic minority over-sampling technique (SMOTE) and the Wilcoxon rank-sum test was performed to retain the most significant features pertaining to cost, time, quality, and scope. Eventually, unlike classical K-means clustering, a genetic-algorithm-based K-means clustering algorithm (GA–K-means) was applied with dual-objective functions to segment high-risk factors and allied sub-risk components. The proposed model identified different high-risk factors and sub-risk factors, which cumulatively can impact overall performance. Thus, identifying these high-risk factors and corresponding sub-risk components can help stakeholders in achieving project success.


2021 ◽  
Author(s):  
Vassiliki I. Kigka ◽  
Antonis I. Sakellarios ◽  
Michalis D. Mantzaris ◽  
Vassilis D. Tsakanikas ◽  
Vassiliki T. Potsika ◽  
...  

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Ayten Kayi Cangir ◽  
Kaan Orhan ◽  
Yusuf Kahya ◽  
Hilal Özakıncı ◽  
Betül Bahar Kazak ◽  
...  

Abstract Introduction Radiomics methods are used to analyze various medical images, including computed tomography (CT), magnetic resonance, and positron emission tomography to provide information regarding the diagnosis, patient outcome, tumor phenotype, and the gene-protein signatures of various diseases. In low-risk group, complete surgical resection is typically sufficient, whereas in high-risk thymoma, adjuvant therapy is usually required. Therefore, it is important to distinguish between both. This study evaluated the CT radiomics features of thymomas to discriminate between low- and high-risk thymoma groups. Materials and methods In total, 83 patients with thymoma were included in this study between 2004 and 2019. We used the Radcloud platform (Huiying Medical Technology Co., Ltd.) to manage the imaging and clinical data and perform the radiomics statistical analysis. The training and validation datasets were separated by a random method with a ratio of 2:8 and 502 random seeds. The histopathological diagnosis was noted from the pathology report. Results Four machine-learning radiomics features were identified to differentiate a low-risk thymoma group from a high-risk thymoma group. The radiomics feature names were Energy, Zone Entropy, Long Run Low Gray Level Emphasis, and Large Dependence Low Gray Level Emphasis. Conclusions The results demonstrated that a machine-learning model and a multilayer perceptron classifier analysis can be used on CT images to predict low- and high-risk thymomas. This combination could be a useful preoperative method to determine the surgical approach for thymoma.


Sign in / Sign up

Export Citation Format

Share Document