Shakedown theorems for some classes of nonassociative hardening elastic-plastic material models

1995 ◽  
Vol 11 (4) ◽  
pp. 367-395 ◽  
Author(s):  
Sławomir Pycko ◽  
Giulio Maier
2020 ◽  
Vol 64 (2) ◽  
pp. 165-171
Author(s):  
Bence Szabó ◽  
Attila Kossa

This work presents explicit dynamic finite element simulations of various impacts of elastic-plastic solid spheres with flat walls. Different  analytical models describing the mechanics of the impact phenomenon are also presented. Elastic and elastic-plastic material models for the sphere and the wall are considered during the analyses. The applicability of these different models is demonstrated and their accuracies are investigated. Closed-form analytical functions are proposed to describe the relationship between the initial velocity of the sphere and the investigated contact characteristics for the given material models. Analysis is carried out to study the effect of the friction coefficient as well as the angle of impact for various cases.


Author(s):  
Yongjian Gao ◽  
Yinbiao He ◽  
Ming Cao ◽  
Yuebing Li ◽  
Shiyi Bao ◽  
...  

In-Vessel Retention (IVR) is one of the most important severe accident mitigation strategies of the third generation passive Nuclear Power Plants (NPP). It is intended to demonstrate that in the case of a core melt, the structural integrity of the Reactor Pressure Vessel (RPV) is assured such that there is no leakage of radioactive debris from the RPV. This paper studied the IVR issue using Finite Element Analyses (FEA). Firstly, the tension and creep testing for the SA-508 Gr.3 Cl.1 material in the temperature range of 25°C to 1000°C were performed. Secondly, a FEA model of the RPV lower head was built. Based on the assumption of ideally elastic-plastic material properties derived from the tension testing data, limit analyses were performed under both the thermal and the thermal plus pressure loading conditions where the load bearing capacity was investigated by tracking the propagation of plastic region as a function of pressure increment. Finally, the ideal elastic-plastic material properties incorporating the creep effect are developed from the 100hr isochronous stress-strain curves, limit analyses are carried out as the second step above. The allowable pressures at 0 hr and 100 hr are obtained. This research provides an alternative approach for the structural integrity evaluation for RPV under IVR condition.


2013 ◽  
Vol 668 ◽  
pp. 616-620
Author(s):  
Shuai Huang ◽  
Huang Yuan

Computational simulations of indentations in elastic-plastic materials showed overestimate in determining elastic modulus using the Oliver & Pharr’s method. Deviations significantly increase with decreasing material hardening. Based on extensive finite element computations the correlation between elastic-plastic material property and indentation has been carried out. A modified method was introduced for estimating elastic modulus from dimensional analysis associated with indentation data. Experimental verifications confirm that the new method produces more accurate prediction of elastic modulus than the Oliver & Pharr’s method.


2002 ◽  
Vol 124 (2) ◽  
pp. 179-184 ◽  
Author(s):  
Akihiko Hirano ◽  
Masao Sakane ◽  
Naomi Hamada

This paper describes the relationship between Rockwell C hardness and elastic-plastic material constants by using finite element analyses. Finite element Rockwell C hardness analyses were carried out to study the effects of friction coefficient and elastic-plastic material constants on the hardness. The friction coefficient and Young’s modulus had no influence on the hardness but the inelastic materials constants, yield stress, and strain hardening coefficient and exponent, had a significant influence on the hardness. A new equation for predicting the hardness was proposed as a function of yield stress and strain hardening coefficient and exponent. The equation evaluated the hardness within a ±5% difference for all the finite element and experimental results. The critical thickness of specimen and critical distance from specimen edge in the hardness testing was also discussed in connection with JIS and ISO standards.


2021 ◽  
Vol 43 (1) ◽  
pp. 107-128
Author(s):  
P. Steblyanko ◽  
◽  
K. Domichev ◽  
A. Petrov ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document