Development of monitoring system on the diamond tool wear

1999 ◽  
Vol 39 (3) ◽  
pp. 505-515 ◽  
Author(s):  
In-Hyu Choi ◽  
Jeong-Du Kim
2011 ◽  
Vol 291-294 ◽  
pp. 3036-3043 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Channarong Rungruang

The aim of this research is to propose and develop the in-process monitoring system of the tool wear for the carbon steel (S45C) in CNC turning process by utilizing the multi-sensor which are the force sensor, the sound sensor, the accelerometer sensor and the acoustic emission sensor. The progress of the tool wear results in the larger cutting force, the higher amplitude of the acceleration signal, and the higher power spectrum densities of sound and acoustic emission signals. Hence, their signals have been integrated via the neural network with the back propagation technique to monitor the tool wear. The experimentally obtained results showed that the in-process monitoring system proposed and developed in this research can be effectively used to estimate the tool wear level with the higher accuracy and reliability.


2010 ◽  
Vol 76 (9) ◽  
pp. 1082-1087 ◽  
Author(s):  
TANG Xinrui ◽  
Miki YOSHINAGA ◽  
Keiichi NAKAMOTO ◽  
Tohru ISHIDA ◽  
Yoshimi TAKEUCHI

Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 573
Author(s):  
Zhang ◽  
Guo ◽  
Chen ◽  
Fu ◽  
Zhao

The surface generation mechanism of the Cu alloys in ultra-precision diamond turning is investigated by both simulation and experimental methods, where the effects of the cutting parameters on the surface characteristics are explored, including the workpiece spindle speed, the cutting depth, the feed rate and the nose radius of the diamond tool. To verify the built model, the cutting experiments are conducted at selected parameters, where the causes of the error between the simulation and the machining results are analyzed, including the effects of the materials microstructure and the diamond tool wear. In addition, the nanometric surface characteristics of the Cu alloys after the diamond turning are identified, including the finer scratching grooves caused by the tool wear, the formation of the surface burs and the adhesion of graphite. The results show that the built model can be basically used to predict the surface topography for the selection of the appropriate machining parameters in the ultra-precision diamond turning process.


2014 ◽  
Vol 625 ◽  
pp. 20-25
Author(s):  
Guo Qing Zhang ◽  
Suet To ◽  
Gao Bo Xiao

In this paper, cutting force and its power spectrum analysis at different tool wear levels are explored. A dynamic model is established to simulate the measured cutting force compositions, and a series of cutting experiments have been conducted to investigate the cutting force evolution with the tool wear progress. Research results reveal that in the time domain, the cutting force in UPRM is characterized as a force pulse follows by a damped vibration signals, the vibration can be modeled by a second order impulse response of the measurement system. While in the frequency domain, it is found that the power spectrum density at the natural frequency of dynamometer increases with the progress of tool wear, which therefore can be utilized to monitor diamond tool wear in UPRM.


Sign in / Sign up

Export Citation Format

Share Document