Modeling of ductile-mode material removal in rotary ultrasonic machining

1998 ◽  
Vol 38 (10-11) ◽  
pp. 1399-1418 ◽  
Author(s):  
Z.J. Pei ◽  
P.M. Ferreira
1995 ◽  
Vol 117 (2) ◽  
pp. 142-151 ◽  
Author(s):  
Z. J. Pei ◽  
D. Prabhakar ◽  
P. M. Ferreira ◽  
M. Haselkorn

An approach to modeling the material removal rate (MRR) during rotary ultrasonic machining (RUM) of ceramics is proposed and applied to predicting the MRR for the case of magnesia stabilized zirconia. The model, a first attempt at predicting the MRR in RUM, is based on the assumption that brittle fracture is the primary mechanism of material removal. To justify this assumption, a model parameter (which models the ratio of the fractured volume to the indented volume of a single diamond particle) is shown to be invariant for most machining conditions. The model is mechanistic in the sense that this parameter can be observed experimentally from a few experiments for a particular material and then used in prediction of MRR over a wide range of process parameters. This is demonstrated for magnesia stabilized zirconia, where very good predictions are obtained using an estimate of this single parameter. On the basis of this model, relations between the material removal rate and the controllable machining parameters are deduced. These relationships agree well with the trends observed by experimental observations made by other investigators.


2014 ◽  
Vol 1027 ◽  
pp. 40-43
Author(s):  
Yan Yan Lou ◽  
Yan Zhang ◽  
Ying Gao ◽  
Jia Chen Zhang ◽  
Yan Zhou Sun

Ultrasonic machining is an important part of modern processing technology which is adapt to all kinds of hard brittle materials processing. This paper reviews the latest progress of the material removal mechanism on one-dimensional ultrasonic machining, two-dimensional ultrasonic machining and rotary ultrasonic machining, and expounds the development trend of establishing the material removal model of the ultrasonic machining.


Author(s):  
Palamandadige K. S. C. Fernando ◽  
Meng (Peter) Zhang ◽  
Zhijian Pei ◽  
Weilong Cong

Aerospace, automotive and sporting goods manufacturing industries have more interest on carbon fiber reinforced plastics due to its superior properties, such as lower density than aluminum; higher strength than high-strength metals; higher stiffness than titanium etc. Rotary ultrasonic machining is a hybrid machining process that combines the material removal mechanisms of diamond abrasive grinding and ultrasonic machining. Hole-making is the most common machining operation done on carbon fiber reinforced plastics, where delamination is a major issue. Delamination reduces structural integrity and increases assembly tolerance, which leads to rejection of a part or a component. Comparatively, rotary ultrasonic machining has been successfully applied to hole-making in carbon fiber reinforced plastics. As reported in the literature, rotary ultrasonic machining is superior to twist drilling of carbon fiber reinforced plastics in six aspects: cutting force, torque, surface roughness, delamination, tool life, and material removal rate. This paper investigates the effects of tool end angle on delamination in rotary ultrasonic machining of carbon fiber reinforced plastics. Several investigators have cited thrust force as a major cause for delamination. Eventhogh, it is found on this investigation, tool end angle has more significant influence on the delamination in rotary ultrasonic machining of carbon fiber reinforced plastics comparing to cutting force and torque.


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3505
Author(s):  
Basem M. A. Abdo ◽  
Syed Hammad Mian ◽  
Abdualziz El-Tamimi ◽  
Hisham Alkhalefah ◽  
Khaja Moiduddin

Micromachining has gained considerable interest across a wide range of applications. It ensures the production of microfeatures such as microchannels, micropockets, etc. Typically, the manufacturing of microchannels in bioceramics is a demanding task. The ubiquitous technologies, laser beam machining (LBM) and rotary ultrasonic machining (RUM), have tremendous potential. However, again, these machining methods do have inherent problems. LBM has issues concerning thermal damage, high surface roughness, and vulnerable dimensional accuracy. Likewise, RUM is associated with high machining costs and low material-removal rates. To overcome their limits, a synthesis of LBM and RUM processes known as laser rotary ultrasonic machining (LRUM) has been conceived. The bioceramic known as biolox forte was utilized in this investigation. The approach encompasses the exploratory study of the effects of fundamental input process parameters of LBM and RUM on the surface quality, machining time, and dimensional accuracy of the manufactured microchannels. The performance of LRUM was analyzed and the mechanism of LRUM tool wear was also investigated. The results revealed that the surface roughness, depth error, and width error is decreased by 88%, 70%, and 80% respectively in the LRUM process. Moreover, the machining time of LRUM is reduced by 85%.


Author(s):  
Judong Shen ◽  
Z. J. Pei ◽  
E. S. Lee

Rotary ultrasonic machining (RUM) is one of the cost-effective machining methods for machining difficult to process material. It is a hybrid machining process that combines the material removal mechanisms of diamond grinding with ultrasonic machining. However, due to the lack of understanding of the mechanisms of these operations, models for these machining processes are difficult to establish. In this paper, the support vector fuzzy adaptive network (SVFAN), a parameter free nonlinear regression technique, is used to model the material removal rate in RUM. The SVFAN retains the advantages of both the fuzzy adaptive networks and the support vector machines. The former possesses the linguistic representation ability and the latter is a very effective learning machine. The results are compared with that obtained by the use of fuzzy adaptive network and it is shown that the combined approach is a more effective algorithm for the modeling of complex manufacturing processes.


Author(s):  
Ravi Pratap Singh ◽  
Sandeep Singhal

Macor ceramic has been well recognized as an eminent engineering material which possesses enlarged industrial usage owing to its excellent and versatile properties. However, its fruitful and economic processing is still unanswered. This article has targeted to experimentally investigate the influence of numerous process variables on machining characteristics in rotary ultrasonic machining of Macor ceramic. The impact of different input factors, namely, spindle speed, feed rate, coolant pressure, and ultrasonic power has been appraised on process responses of interest, that is, material removal rate and chipping size. The experimental plan was designed by employing response surface methodology through central composite rotatable design. The variance analysis test has also been performed with a view to observe the significance of considered parameters. Microstructure of machined samples has also been evaluated and analyzed using scanning electron microscope. This analysis has revealed and confirmed the presence of dominated brittle fracture that caused removal of material along with the thin plastic deformation in rotary ultrasonic machining of Macor ceramic. The reliability and competence of the developed mathematical model have been established with test results. The multi-response optimization of machining responses has also been done by utilizing desirability approach, and at optimized parametric setting, the obtained experimental values for material removal rate and chipping size are 0.4762 mm3/s and 0.3718 mm, respectively, with the combined desirability index value of 0.937.


Sign in / Sign up

Export Citation Format

Share Document