scholarly journals A meta-analysis of genome-wide linkage scans for hypertension:The National Heart, Lung and BloodInstitute Family Blood Pressure Program

2003 ◽  
Vol 16 (2) ◽  
pp. 144-147 ◽  
Author(s):  
M Province
2011 ◽  
Vol 24 (3) ◽  
pp. 347-354 ◽  
Author(s):  
Jeannette Simino ◽  
Gang Shi ◽  
Rezart Kume ◽  
Karen Schwander ◽  
Michael A. Province ◽  
...  

2006 ◽  
Vol 7 (1) ◽  
Author(s):  
Jason M Laramie ◽  
Jemma B Wilk ◽  
Steven C Hunt ◽  
R Curtis Ellison ◽  
Aravinda Chakravarti ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaakko Laaksonen ◽  
Pashupati P. Mishra ◽  
Ilkka Seppälä ◽  
Leo-Pekka Lyytikäinen ◽  
Emma Raitoharju ◽  
...  

AbstractHigh blood pressure (BP) is a major risk factor for many noncommunicable diseases. The effect of mitochondrial DNA single-nucleotide polymorphisms (mtSNPs) on BP is less known than that of nuclear SNPs. We investigated the mitochondrial genetic determinants of systolic, diastolic, and mean arterial BP. MtSNPs were determined from peripheral blood by sequencing or with genome-wide association study SNP arrays in two independent Finnish cohorts, the Young Finns Study and the Finnish Cardiovascular Study, respectively. In total, over 4200 individuals were included. The effects of individual common mtSNPs, with an additional focus on sex-specificity, and aggregates of rare mtSNPs grouped by mitochondrial genes were evaluated by meta-analysis of linear regression and a sequence kernel association test, respectively. We accounted for the predicted pathogenicity of the rare variants within protein-encoding and the tRNA regions. In the meta-analysis of 87 common mtSNPs, we did not observe significant associations with any of the BP traits. Sex-specific and rare-variant analyses did not pinpoint any significant associations either. Our results are in agreement with several previous studies suggesting that mtDNA variation does not have a significant role in the regulation of BP. Future studies might need to reconsider the mechanisms thought to link mtDNA with hypertension.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Sonal Singh ◽  
Caitrin W. McDonough ◽  
Yan Gong ◽  
Kent R. Bailey ◽  
Eric Boerwinkle ◽  
...  

AbstractChlorthalidone (CTD) is more potent than hydrochlorothiazide (HCTZ) in reducing blood pressure (BP) in hypertensive patients, though both are plagued with BP response variability. However, there is a void in the literature regarding the genetic determinants contributing to the variability observed in BP response to CTD. We performed a discovery genome wide association analysis of BP response post CTD treatment in African Americans (AA) and European Americans (EA) from the Pharmacogenomic Evaluation of Antihypertensive Responses-2 (PEAR-2) study and replication in an independent cohort of AA and EA treated with HCTZ from the PEAR study, followed by a race specific meta-analysis of the two studies. Successfully replicated SNPs were further validated in beta-blocker treated participants from PEAR-2 and PEAR for opposite direction of association. The replicated and validated signals were further evaluated by protein-protein interaction network analysis. An intronic SNP rs79237970 in the WDR92 (eQTL for PPP3R1) was significantly associated with better DBP response to CTD (p = 5.76 × 10−6, β = −15.75) in the AA cohort. This SNP further replicated in PEAR (p = 0.00046, β = −9.815) with a genome wide significant meta-analysis p-value of 8.49 × 10−9. This variant was further validated for opposite association in two β-blockers treated cohorts from PEAR-2 metoprolol (p = 9.9 × 10−3, β = 7.47) and PEAR atenolol (p = 0.04, β = 4.36) for association with DBP. Studies have implicated WDR92 in coronary artery damage. PPP3R1 is the regulatory subunit of the calcineurin complex. Use of calcineurin inhibitors is associated with HTN. Studies have also shown polymorphisms in PPP3R1 to be associated with ventricular hypertrophy in AA hypertensive patients. Protein-protein interaction analysis further identified important hypertension related pathways such as inositol phosphate-mediated signaling and calcineurin-NFAT signaling cascade as important biological process associated with PPP3R1 which further strengthen the potential importance of this signal. These data collectively suggest that WDR92 and PPP3R1 are novel candidates that may help explain the genetic underpinnings of BP response of thiazide and thiazide-like diuretics and help identify the patients better suited for thiazide and thiazide-like diuretics compared to β-blockers for improved BP management. This may further help advance personalized approaches to antihypertensive therapy.


Hypertension ◽  
2016 ◽  
Vol 67 (3) ◽  
pp. 556-563 ◽  
Author(s):  
Yan Gong ◽  
Zhiying Wang ◽  
Amber L. Beitelshees ◽  
Caitrin W. McDonough ◽  
Taimour Y. Langaee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document