A technique for measuring two-phase relative permeability in porous media via X-ray CT measurements

2003 ◽  
Vol 39 (1-2) ◽  
pp. 159-174 ◽  
Author(s):  
J.M. Schembre ◽  
A.R. Kovscek
2017 ◽  
Vol 10 (1) ◽  
pp. 13-22
Author(s):  
Renyi Cao ◽  
Junjie Xu ◽  
Xiaoping Yang ◽  
Renkai Jiang ◽  
Changchao Chen

During oilfield development, there exist multi-cycle gas–water mutual displacement processes. This means that a cycling process such as water driving gas–gas driving water–water driving gas is used for the operation of injection and production in a single well (such as foam huff and puff in single well or water-bearing gas storage). In this paper, by using core- and micro-pore scales model, we study the distribution of gas and water and the flow process of gas-water mutual displacement. We find that gas and water are easier to disperse in the porous media and do not flow in continuous gas and water phases. The Jamin effect of the gas or bubble becomes more severe and makes the flow mechanism of multi-cycle gas–water displacement different from the conventional water driving gas or gas driving water processes. Based on experiments of gas–water mutual displacement, the changing mechanism of gas–water displacement is determined. The results indicate that (1) after gas–water mutual displacement, the residual gas saturation of a gas–water coexistence zone becomes larger and the two-phase zone becomes narrower, (2) increasing the number of injection and production cycles causes the relative permeability of gas to increase and relative permeability for water to decrease, (3) it becomes easier for gas to intrude and the invaded water becomes more difficult to drive out and (4) the microcosmic fluid distribution of each stage have a great difference, which caused the two-phase region becomes narrower and effective volume of gas storage becomes narrower.


1996 ◽  
Vol 464 ◽  
Author(s):  
E. H. Kawamoto ◽  
Po-Zen Wong

ABSTRACTWe have carried out x-ray radiography and computed tomography (CT) to study two-phase flow in 3-D porous media. Air-brine displacement was imaged for drainage and imbibition experiments in a vertical column of glass beads. By correlating water saturation Sw with resistance R, we find that there is a threshold saturation S* ≈ 0.2, above which R(SW) ∼ Sw−2, in agreement with the empirical Archie relation. This holds true for both drainage and imbibition with littlehysteresis, provided that Sw remains above S*. Should Sw drop below S* during drainage, R(Sw) rises above the Archie prediction, exhibiting strong hysteresis upon reimbibition. This behavior suggests a transition in the connectivity of the water phase near S*, possibly due to percolation effects.


Author(s):  
Mosayeb Shams ◽  
Kamaljit Singh ◽  
Branko Bijeljic ◽  
Martin J. Blunt

AbstractThis study focuses on direct numerical simulation of imbibition, displacement of the non-wetting phase by the wetting phase, through water-wet carbonate rocks. We simulate multiphase flow in a limestone and compare our results with high-resolution synchrotron X-ray images of displacement previously published in the literature by Singh et al. (Sci Rep 7:5192, 2017). We use the results to interpret the observed displacement events that cannot be described using conventional metrics such as pore-to-throat aspect ratio. We show that the complex geometry of porous media can dictate a curvature balance that prevents snap-off from happening in spite of favourable large aspect ratios. We also show that pinned fluid-fluid-solid contact lines can lead to snap-off of small ganglia on pore walls; we propose that this pinning is caused by sub-resolution roughness on scales of less than a micron. Our numerical results show that even in water-wet porous media, we need to allow pinned contacts in place to reproduce experimental results.


1979 ◽  
Vol 19 (01) ◽  
pp. 15-28 ◽  
Author(s):  
P.M. Sigmund ◽  
F.G. McCaffery

Abstract With typical heterogeneous carbonate coresamples, large uncertainties of unknown magnitudecan occur in the relative permeabilities derived using different methods. This situation can beimproved by analyzing the recovery and pressureresponse to two-phase laboratory displacement tests by a nonlinear least-squares procedure. Thesuggested technique fits the finite-differencesolution of the Buckley-Leverett two-phase flowequations(which include capillary pressure) to theobserved recovery and pressure data. The procedureis used to determine relative-permeability curves characterized by two parameters and their standarderrors for heterogeneous cores from two Albertacarbonate reservoirs. Introduction Several recent investigations have recognizedpossible problems when obtaining reliable two-phasedisplacement data from heterogeneous carbonate core samples. Huppler stated that waterfloodresults on cores with significant heterogeneitiescan be sensitive to flooding rate, core length, andwettability, and that these effects should beconsidered before applying the laboratory results atfield flooding rates. Brandner and Slotboomsuggested that realistic displacement results maynot be obtainable when vertically flooding aheterogeneous core with a nonwetting phase becauseof the fluid's inability to maintain a properdistribution when the sample length is less than the height of capillary rise. Ehrlich noted thatstandard relative-permeability measurement methodsusing core plugs cannot be applied when the media are heterogeneous. Archer and Wong reported that application of theconventional Johnson- Bossler - Neumann (JBN)methods for determining relative permeabilities froma waterflood test could give erroneous results forheterogeneous carbonate as well as for relativelyhomogeneous porous media having a mixed wettability (see Refs. 1, 6, and 7). The observedstepwise or humped shape of water relativepermeability curves mainly were attributed to theeffect of water breakthrough ahead of the main floodfront entering into the JBN calculation. Archer andWong suggested that such abnormally shapedrelative-permeability curves do not represent theproperties of the bulk of the core sample, and proposed the use of a reservoir simulator forinterpreting laboratory waterflood data. The work referred to above provides the majorbackground for this study involving the developmentof an improved unsteady-state test method tocharacterize the relative-permeability properties ofheterogeneous carbonate core samples. The methodcan be applied to all porous media, regardless ofthe size and distribution of the heterogeneities.However, the presence of large-scaleheterogeneities, especially in the form of vugs, fractures, and stratification, could cause the derivedrelative-permeability relations to be affected by viscosityratio and displacement rate. Remember also that extrapolation of any core test data to a field scaleis associated with many uncertainties, particularlyfor heterogeneous formations. The inclusion ofcapillary pressure effects permits the interpretationof displacement tests at reservoir rates. The proposed calculation procedure extends theapproach suggested by Archer and Wong in thatthe degree of fit between observed laboratory dataand simulator results is quantified. We suggest thatrelative-permeability curves for a variety of rocktypes can be expressed in terms of two adjustable parameters and their standard error estimates.To illustrate the method, the results of displacementtests performed on cores from Swan Hills Beaverhill Lake limestone oil reservoir and Rainbow F KegRiver dolomite oil reservoir are interpreted. SPEJ P. 15^


10.2172/9320 ◽  
1999 ◽  
Author(s):  
William E. Brigham ◽  
Castanier Louis M. ◽  
Richard G. Hughes

Sign in / Sign up

Export Citation Format

Share Document