Interleukin-12 and up: functions of T helper subsets resulting from differential cytokine production

1997 ◽  
Vol 148 (6) ◽  
pp. 413-416 ◽  
Author(s):  
A. O'Garra
Cytokines ◽  
2011 ◽  
pp. 93-106
Author(s):  
Courtney Kurtz ◽  
Jeffrey Wilson ◽  
Steven Black ◽  
Peter Ernst

1996 ◽  
Vol 26 (7) ◽  
pp. 1647-1651 ◽  
Author(s):  
Mark J. Micallef ◽  
Takashi Ohtsuki ◽  
Keizo Kohno ◽  
Fujimi Tanabe ◽  
Shimpei Ushio ◽  
...  

1994 ◽  
Vol 179 (4) ◽  
pp. 1273-1283 ◽  
Author(s):  
R Manetti ◽  
F Gerosa ◽  
M G Giudizi ◽  
R Biagiotti ◽  
P Parronchi ◽  
...  

Interleukin 12 (IL-12) facilitates the generation of a T helper type 1 (Th1) response, with high interferon gamma (IFN-gamma) production, while inhibiting the generation of IL-4-producing Th2 cells in polyclonal cultures of both human and murine T cells and in vivo in the mouse. In this study, we analyzed the effect of IL-12, present during cloning of human T cells, on the cytokine profile of the clones. The culture system used allows growth of clones from virtually every T cell, and thus excludes the possibility that selection of precommitted Th cell precursors plays a role in determining characteristics of the clones. IL-12 present during the cloning procedures endowed both CD4+ and CD8+ clones with the ability to produce IFN-gamma at levels severalfold higher than those observed in clones generated in the absence of IL-12. This priming was stable because the high levels of IFN-gamma production were maintained when the clones were cultured in the absence of IL-12 for 11 d. The CD4+ and some of the CD8+ clones produced variable amounts of IL-4. Unlike IFN-gamma, IL-4 production was not significantly different in clones generated in the presence or absence of IL-12. These data suggest that IL-12 primes the clone progenitors, inducing their differentiation to high IFN-gamma-producing clones. The suppression of IL-4-producing cells observed in polyclonally generated T cells in vivo and in vitro in the presence of IL-12 is not observed in this clonal model, suggesting that the suppression depends more on positive selection of non-IL-4-producing cells than on differentiation of individual clones. However, antigen-specific established Th2 clones that were unable to produce IFN-gamma with any other inducer did produce IFN-gamma at low but significant levels when stimulated with IL-12 in combination with specific antigen or insoluble anti-CD3 antibodies. This induction of IFN-gamma gene expression was transient, because culture of the established clones with IL-12 for up to 1 wk did not convert them into IFN-gamma producers when stimulated in the absence of IL-12. These results suggest that Th clones respond to IL-12 treatment either with a stable priming for IFN-gamma production or with only a transient low level expression of the IFN-gamma gene, depending on their stage of differentiation.


2002 ◽  
Vol 195 (11) ◽  
pp. 1499-1505 ◽  
Author(s):  
Leonid Gorelik ◽  
Stephanie Constant ◽  
Richard A. Flavell

Regulation by transforming growth factor (TGF)-β plays an important role in immune homeostasis. TGF-β inhibits T cell functions by blocking both proliferation and differentiation. Here we show that TGF-β blocks Th1 differentiation by inhibiting the expression of T-bet, the apparent masterregulator of T helper (Th)1 differentiation. Restoration of T-bet expression through retroviral transduction of T-bet into developing Th1 cells abrogated the inhibitory effect of TGF-β. In addition, we show that, contrary to prior suggestions, downregulation of interleukin 12 receptor β2 chain is not key to the TGF-β–mediated effect. Furthermore, we show that the direct inhibitory effect of TGF-β on T cells is responsible, at least in part, for the inability of BALB/c mice to mount a Leishmania-specific Th1 response and to clear Leishmanial infection.


2009 ◽  
Vol 16 (6) ◽  
pp. 798-805 ◽  
Author(s):  
Soad Nady ◽  
James Ignatz-Hoover ◽  
Mohamed T. Shata

ABSTRACT Recently, a new lineage of CD4+ T cells in humans and in mice has been reported. This T helper cell secretes interleukin-17 (IL-17) and has been defined as T helper 17 (Th17). Th17 cells express the IL-23 receptor (IL-23R) and play an important pathogenic role in different inflammatory conditions. In this study, our aim was to characterize the optimum conditions for isolation and propagation of human peripheral blood Th17 cells in vitro and the optimum conditions for isolation of Th17 clones. To isolate Th17 cells, two steps were taken. Initially, we negatively isolated CD4+ T cells from peripheral blood mononuclear cells of a normal human blood donor. Then, we isolated the IL-23R+ cells from the CD4+ T cells. Functional studies revealed that CD4+ IL-23R+ cells could be stimulated ex vivo with anti-CD3/CD28 to secrete both IL-17 and gamma interferon (IFN-γ). Furthermore, we expanded the CD4+ IL-23R+ cells for 1 week in the presence of anti-CD3/CD28, irradiated autologous feeder cells, and different cytokines. Our data indicate that cytokine treatment increased the number of propagated cells 14- to 99-fold. Functional evaluation of the expanded number of CD4+ IL-23R+ cells in the presence of different cytokines with anti-CD3/CD28 revealed that all cytokines used (IL-2, IL-7, IL-12, IL-15, and IL-23) increased the amount of IFN-γ secreted by IL-23R+ CD4+ cells at different levels. Our results indicate that IL-7 plus IL-12 was the optimum combination of cytokines for the expansion of IL-23R+ CD4+ cells and the secretion of IFN-γ, while IL-12 preferentially stimulated these cells to secrete predominately IL-17.


2001 ◽  
Vol 69 (10) ◽  
pp. 6064-6073 ◽  
Author(s):  
Cinzia Retini ◽  
Thomas R. Kozel ◽  
Donatella Pietrella ◽  
Claudia Monari ◽  
Francesco Bistoni ◽  
...  

ABSTRACT We previously demonstrated that the principal component of capsular material of Cryptococcus neoformans, glucuronoxylomannan (GXM), induces interleukin-10 (IL-10) secretion from human monocytes. Here we report that encapsulation of the yeast with GXM is able to down-regulate interleukin-12 (IL-12) production by monocytes that would normally occur in the absence of encapsulation. This phenomenon appeared to be the result of inhibition of the phagocytic process by encapsulation with GXM as well as of negative signals such as IL-10 secretion produced by interaction of GXM with leukocytes. Decreased secretion of IL-12 correlated with decreased release of gamma interferon (IFN-γ) from T cells, suggesting a role for encapsulation with GXM in hindering a T helper type 1 (Th1) response. This is supported by the ability of encapsulation with GXM to limit increased expression of B7-1 costimulatory molecules that otherwise might limit IL-10 secretion. Endogenous IL-10 played a critical role in modulatory activity associated with encapsulation with GXM. Blocking IL-10 with monoclonal antibody to IL-10 resulted in increased (i) IL-12 secretion, (ii) IFN-γ release from T cells, and (iii) killing of C. neoformans by monocytes. These results suggest that encapsulation with GXM limits development of a protective Th1-type response, an inhibitory process in which IL-10 plays a critical role. Scavengers of GXM and/or IL-10 could be useful in a protective Th1-type response in patients with cryptococcosis.


2017 ◽  
Vol 206 (6) ◽  
pp. 429-439 ◽  
Author(s):  
Michelle de Campos Soriani Azevedo ◽  
Heloisa Marques ◽  
Larissa Sarri Binelli ◽  
Mariana Silva Vieira Malange ◽  
Amanda Carreira Devides ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document