On crack susceptibility in the submerged arc welding of medium-carbon steel plates

1997 ◽  
Vol 68 (1) ◽  
pp. 43-49 ◽  
Author(s):  
M.E. Khallaf ◽  
M.A. Ibrahim ◽  
N.A. El-Mahallawy ◽  
M.A. Taha
2017 ◽  
Vol 1143 ◽  
pp. 52-57
Author(s):  
Elena Scutelnicu ◽  
Carmen Catalina Rusu ◽  
Bogdan Georgescu ◽  
Octavian Mircea ◽  
Melat Bormambet

The paper addresses the development of advanced welding technologies with two and three solid wires for joining of HSLA API-5l X70 (High-strength low-alloy) steel plates with thickness of 19.1 mm. The experiments were performed using a multi-wire Submerged Arc Welding (SAW) system that was developed for welding of steels with solid, tubular and cold wires, in different combinations. The main goal of the research was to assess the mechanical performances of the welded joints achieved by multi-wire SAW technology and then to compare them with the single wire variant, as reference system. The welded samples were firstly subjected to NDT control by examinations with liquid penetrant, magnetic particle, ultrasonic and gamma radiation, with the aim of detecting the specimens with flaws and afterwards to reconsider and redesign the corresponding Welding Procedure Specifications (WPS). The defect-free welded samples were subjected to tensile, Charpy V-notch impact and bending testing in order to analyse and report the mechanical behaviour of API-5l X70 steel during multi-wire SAW process. The experimental results were processed and comparatively discussed. The challenge of the investigation was to find the appropriate welding technology which responds simultaneously to the criteria of quality and productivity. Further research on metallurgical behaviour of the base material will be developed, in order to conclude the complete image of the SAW process effects and to understand how the multi-wire technologies affect the mechanical and metallurgical characteristics of the API-5L X70 steel used in pipelines fabrication.


2021 ◽  
Vol 30 (1) ◽  
pp. 171-178
Author(s):  
K. Karthick ◽  
S. Malarvizhi ◽  
V. Balasubramanian

Abstract Distinct materials are used for the construction of battle tanks used in defense sectors. The hull and turret of the battle tanks are made up of rolled homogeneous armor steel (also known as armor steel). The inner portions like the driver cabin and control room are covered with medium carbon steel. Hence, the dissimilar joint between these materials is unavoidable in the battle tank construction. Conventional fusion welding processes like manual metal arc welding, gas metal arc welding, and gas tungsten arc welding are preferred to join the dissimilar metals. However, the high heat input nature of these processes will create hydrogen induced cracking, high residual tensile strain, and HAZ softening, etc. To minimize these issues, solid state welding processes were adopted. In the present study, mechanical properties and microstructural characteristics of rotary friction welded dissimilar joint of armor steel and medium carbon steel was analyzed. The ultimate tensile strength of the dissimilar joint is around 775 MPa and the failure occurred at the medium carbon steel side. The impact toughness value of dissimilar joints is higher than medium carbon steel and lower than armor steel. The microstructure across the dissimilar joint has distinct features and a complex pattern was observed at the weld interface.


2014 ◽  
Vol 783-786 ◽  
pp. 859-866 ◽  
Author(s):  
Dong Sheng Liu ◽  
Chong Xiang Yue ◽  
Huan De Chen ◽  
Bing Gui Cheng

Key parameters for thermomechanical control process (TMCP) and integrated welding operations have been determined to industrialize extra high strength micro-alloyed low carbon SiMnCrMoNiCu steel plates for bridge applications. Confocal Scanning Microscope was used to make In-situ observation on austenite grain growth during reheating. A Gleeble 3800 thermomechanical simulator was employed to investigate transformation behavior of the TMCP conditioned austenite. Integrated industrial rolling trial was conducted to correlate the laboratory observations and commercial production of the plates. Microstructure factors affecting the toughness of the steel were analyzed. Submerged-Arc Welding (SMAW) trails were conducted and the structures and mechanical properties of the weld joints characterized. The representative plate with thickness of 60 mm consisted of acicular ferrite (AF) + refined polygonal ferrite (PF) + granular bainite (GB) across the entire thickness section exhibit yield strength (YS) greater than 560 MPa in transverse direction and excellent Charpy V Notch (CVN) impact toughness greater than 100 J at-40 °C in the parent metal and the weld joints. These provide useful integrated database for producing advanced high strength steel plates via TMCP. Keywords: Thermo-Mechanical Control Process;Weathering Steel Plate for Bridge; Submerged-Arc Welding without Preheating


2012 ◽  
Vol 3 (3) ◽  
pp. 228-233
Author(s):  
R. Dhollander ◽  
S. Vancauwenberghe ◽  
W. De Waele ◽  
N. Van Caenegem ◽  
E. Van Pottelberg

The assembly of large structures made out of thick steel plates requires a welding process bywhich multiple wires can be used simultaneously. To reproduce these industrial processes in a researchenvironment, OCAS has invested in a multiwire submerged arc welding (SAW) setup. In this multiwiresetup, up to five wires in tandem configuration can be used.The objective of this master thesis is to establish a deeper knowledge of process parameters used to weldsteel plates in a thickness range of 12,7 up to 25 mm, by means of the submerged arc welding process.Based on literature, a test matrix is composed in which the number of wires, the plate thickness and otherweld parameters are the variables. In addition, a specific plate preparation for each plate thickness isderived from the literature. The preformed weld trails will be evaluated on weld bead geometry andmetallographic properties. There is further experimental examination required, which will result in therevising of the matrix.


Author(s):  
Ankush Choudhary ◽  
Munish Kumar Gupta ◽  
Manoj Kumar

In this paper, a novel developed water-cooled advanced submerged arc welding (WASAW) process has been designed and established. The developed WASAW process can be utilized for higher preheating currents at 100% duty cycle. Subsequently, a multi-pass welding investigation has been carried out on AISI 1023 steel plates as per the L8 Taguchi orthogonal array by varying WASAW input factors namely voltage (V), wire feed rate (WFR), welding speed (WS), nozzle to plate distance (NPD), and preheat current (I), respectively. The relationships between selected WASAW process parameters and responses namely tensile strength (TS), yield strength (YS), percentage elongation (E), and weld metal hardness (H) has been established with statistical regression analysis and ANOVA method. Then, the effect of each input factor and their interactions on selected responses was analyzed using single effect and 3D surface plots. Lately, the fractography analysis of tensile fractured surfaces has been carried out to study the failure in all weld metals. Finally, Jaya and genetic algorithms have been applied to optimize the WASAW performance. Overall, the outcomes reveal that developed WASAW process yields a substantial enhancement in the mechanical behavior of all weld metals.


2011 ◽  
Vol 681 ◽  
pp. 364-369
Author(s):  
Maria José Marques ◽  
António Castanhola Batista ◽  
Joana Rebelo-Kornmeier ◽  
Michael Hofmann ◽  
Joao P. Nobre ◽  
...  

The influence of the heat treatment on the residual stress fields of weld cladded samples is discussed in this paper. The samples were elaborated from carbon steel plates, cladded in one of the faces with stainless steel filler metals by submerged arc welding. After the cladding process some of the samples were submitted to heat treatments with different parameters: one at 620° C for a holding time of 1 hour and the other at 540° C for a period of ten hours. The in‑depth residual stress profiles were determined by neutron diffraction. The results shown that the sample treated to 620 °C, presented the highest residual stress relaxation. The corresponding heat treatment has the industrial benefit to be shorter than the other heat treatment.


2011 ◽  
Vol 284-286 ◽  
pp. 2469-2472
Author(s):  
Aniruddha Ghosh ◽  
Somnath Chattopadhyaya ◽  
S. Mukherjee

In Submerged Arc Welding process involves critical set of variables which are needed to control. An attempt has been made in this paper to find out- the influence of the heat input and bead volume on HAZ Hardness for Submerged Arc Welding Process of Mild steel plates. Mild steel plates are welded by changing input variables (current, voltage, travel speed, i.e. heat input) and Rockwell hardness no. has been observed on welded portion and at the zone adjacent to the welded portion. A detailed analysis of the microstructure changes is carried out to understand the HAZ softening phenomenon.


Sign in / Sign up

Export Citation Format

Share Document