Vibrational force fields and spectra of fluorinates stilbenes and their ions from ab initio and semi-empirical quantum-chemical calculations

2000 ◽  
Vol 24 (1) ◽  
pp. 125-136 ◽  
Author(s):  
Fabrizia Negri
1999 ◽  
Vol 19 (1-4) ◽  
pp. 105-108 ◽  
Author(s):  
Fabrizia Negri ◽  
Marek Z. Zgierski

We present the simulations and analysis of the two-color ZEKE spectra of naphthalene, performed with the help of quantum chemical calculations of molecular parameters followed by the modelling of vibronic intensities. Ab initio and semi-empirical calculations were carried out to obtain molecular structures of neutral and ionic naphthalene, and vibronic perturbations that couple the electronic states. It is shown that the intensities, simulated with a model based on the perturbative expansion of vibronic states, nicely reproduce the observed spectra and contribute to reassign some of the ground state frequencies of naphthalene cation.


2016 ◽  
Vol 192 ◽  
pp. 415-436 ◽  
Author(s):  
Alexander J. Cresswell ◽  
Richard J. Wheatley ◽  
Richard D. Wilkinson ◽  
Richard S. Graham

Impurities from the CCS chain can greatly influence the physical properties of CO2. This has important design, safety and cost implications for the compression, transport and storage of CO2. There is an urgent need to understand and predict the properties of impure CO2 to assist with CCS implementation. However, CCS presents demanding modelling requirements. A suitable model must both accurately and robustly predict CO2 phase behaviour over a wide range of temperatures and pressures, and maintain that predictive power for CO2 mixtures with numerous, mutually interacting chemical species. A promising technique to address this task is molecular simulation. It offers a molecular approach, with foundations in firmly established physical principles, along with the potential to predict the wide range of physical properties required for CCS. The quality of predictions from molecular simulation depends on accurate force-fields to describe the interactions between CO2 and other molecules. Unfortunately, there is currently no universally applicable method to obtain force-fields suitable for molecular simulation. In this paper we present two methods of obtaining force-fields: the first being semi-empirical and the second using ab initio quantum-chemical calculations. In the first approach we optimise the impurity force-field against measurements of the phase and pressure–volume behaviour of CO2 binary mixtures with N2, O2, Ar and H2. A gradient-free optimiser allows us to use the simulation itself as the underlying model. This leads to accurate and robust predictions under conditions relevant to CCS. In the second approach we use quantum-chemical calculations to produce ab initio evaluations of the interactions between CO2 and relevant impurities, taking N2 as an exemplar. We use a modest number of these calculations to train a machine-learning algorithm, known as a Gaussian process, to describe these data. The resulting model is then able to accurately predict a much broader set of ab initio force-field calculations at comparatively low numerical cost. Although our method is not yet ready to be implemented in a molecular simulation, we outline the necessary steps here. Such simulations have the potential to deliver first-principles simulation of the thermodynamic properties of impure CO2, without fitting to experimental data.


2020 ◽  
Vol 16 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Piotr Kawczak ◽  
Leszek Bober ◽  
Tomasz Bączek

Background: Pharmacological and physicochemical classification of bases’ selected analogues of nucleic acids is proposed in the study. Objective: Structural parameters received by the PCM (Polarizable Continuum Model) with several types of calculation methods for the structures in vacuo and in the aquatic environment together with the huge set of extra molecular descriptors obtained by the professional software and literature values of biological activity were used to search the relationships. Methods: Principal Component Analysis (PCA) together with Factor Analysis (FA) and Multiple Linear Regressions (MLR) as the types of the chemometric approach based on semi-empirical ab initio molecular modeling studies were performed. Results: The equations with statistically significant descriptors were proposed to demonstrate both the common and differentiating characteristics of the bases' analogues of nucleic acids based on the quantum chemical calculations and biological activity data. Conclusion: The obtained QSAR models can be used for predicting and explaining the activity of studied molecules.


2021 ◽  
Author(s):  
Soichi Shirai ◽  
Shinji Inagaki

Practical strategies for suppressing Si–C cleavage during the polycondensation of organosilanes were presented based on ab initio quantum chemical calculations of model compounds.


2009 ◽  
Vol 50 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Yu. V. Frolov ◽  
A. V. Vashchenko ◽  
A. G. Mal’kina ◽  
B. A. Trofimov

2020 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<p>This article presents theoretical data on geometric and energetic features of halobenzenes and xylenes. Data were obtained from <i>ab initio</i> geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</p>


Author(s):  
John A. Tossell ◽  
David J. Vaughan

In this final chapter, an attempt is made to provide an overview of the capabilities of quantum-mechanical methods at the present time, and to highlight the needs for future development and possible future applications of these methods, particularly in areas related to mineral structures, energetics, and spectroscopy. There is also a brief account of some new areas of application, specific directions for future research, and possible developments in the perception and use of quantum-mechanical approaches. The book ends with an epilog on the overall role of “theoretical geochemistry” in the earth and environmental sciences. The local structural characteristics of minerals such as Mg2SiO4, which contain only main-group elements, are reasonably well reproduced by ab initio Hartree-Fock-Roothaan (SCF) cluster calculations at the mediumbasis- set level. Calculations incorporating configuration interaction will inevitably follow and probably lead to somewhat better agreement with experiment. The most pressing needs in this area of study are for the development of systematic procedures for cluster selection and embedding, for a greater understanding of the results at a qualitative level, and for more widespread efficient application of the quantum-chemical results currently available. In the last area, substantial progress has already been made by Lasaga and Gibbs (1987), Sanders et al. (1984), Tsuneyuki et al. (1988), and others, who have used ab initio calculations to generate theoretical force fields which can then be used in molecular-dynamics simulations. If the characteristics of the resultant force fields can be understood at a first-principles level, then it may be possible to understand details of the simulated structures at the same level. Unfortunately, as regards a greater qualitative understanding of the quantum-mechanical calculations, little progress has been made. Rather old qualitative theories describe some aspects of bond-angle variation (Tossell, 1986), but no general model to interpret variations in bond lengths has been developed within either chemistry or geochemistry beyond the model of additive atomic (Slater) or ionic (Shannon and Prewitt) radii. Indeed, global theories of bond-length variations within an ab initio framework seem to be nonexistent. Nonetheless, quantum-chemical studies have shown the presence of intriguing systematics in bond lengths (Gibbs et al., 1987), which had been already noted empirically.


2011 ◽  
Vol 134 (4) ◽  
pp. 044535 ◽  
Author(s):  
Bhaswati Bhattacharya ◽  
Barnali Jana ◽  
Debosreeta Bose ◽  
Nitin Chattopadhyay

Sign in / Sign up

Export Citation Format

Share Document