P4.019 Differential diagnosis of leukodystrophies with magnetic resonance spectroscopy in vivo

2004 ◽  
Vol 14 ◽  
pp. S330
Author(s):  
S.S.I. Saukovio ◽  
D.V. Diklic
Cancers ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 360
Author(s):  
Omkar B. Ijare ◽  
Martyn A. Sharpe ◽  
David S. Baskin ◽  
Kumar Pichumani

Background: Rathke’s Cleft Cysts (RCCs) are rare epithelial cysts arising from remnants of the Rathke pouch in the pituitary gland. A subset of these lesions enlarge and produce a mass effect with consequent hypopituitarism, and may result in visual loss. Moreover, some RCCs with a high intra-cystic protein content may mimic cystic pituitary adenoma, which makes their differential diagnosis ambiguous. Currently, medical professionals have no definitive way to distinguish RCCs from pituitary adenomas. Therefore, preoperative confirmation of RCCs would be of help to medical professionals for the management and proper surgical decision making. The goal of this study is to identify molecular markers in RCCs. Methods: We characterized aqueous and chloroform extracts of surgically resected RCCs and pituitary adenomas using ex vivo 1H NMR spectroscopy. Results: All RCCs exclusively showed the presence of mucopolysaccharides which are glycosaminoglycans (GAGs) made up of disaccharides of aminosugars and uronic sugars. Conclusion: GAGs can be used as metabolite marker for the detection of RCCs and this knowledge will lay the groundwork for the development of a non-invasive, in vivo magnetic resonance spectroscopy methodology for the differential diagnosis of RCCs and pituitary adenomas using clinical MRI scanners.


This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.


NeuroImage ◽  
2004 ◽  
Vol 22 (1) ◽  
pp. 381-386 ◽  
Author(s):  
E Adalsteinsson ◽  
R.E Hurd ◽  
D Mayer ◽  
N Sailasuta ◽  
E.V Sullivan ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Martin Gajdošík ◽  
Karl Landheer ◽  
Kelley M. Swanberg ◽  
Christoph Juchem

AbstractIn vivo magnetic resonance spectroscopy (MRS) is a powerful tool for biomedical research and clinical diagnostics, allowing for non-invasive measurement and analysis of small molecules from living tissues. However, currently available MRS processing and analytical software tools are limited in their potential for in-depth quality management, access to details of the processing stream, and user friendliness. Moreover, available MRS software focuses on selected aspects of MRS such as simulation, signal processing or analysis, necessitating the use of multiple packages and interfacing among them for biomedical applications. The freeware INSPECTOR comprises enhanced MRS data processing, simulation and analytical capabilities in a one-stop-shop solution for a wide range of biomedical research and diagnostic applications. Extensive data handling, quality management and visualization options are built in, enabling the assessment of every step of the processing chain with maximum transparency. The parameters of the processing can be flexibly chosen and tailored for the specific research problem, and extended confidence information is provided with the analysis. The INSPECTOR software stands out in its user-friendly workflow and potential for automation. In addition to convenience, the functionalities of INSPECTOR ensure rigorous and consistent data processing throughout multi-experiment and multi-center studies.


Sign in / Sign up

Export Citation Format

Share Document