Benchmarks for finite element analysis of creep continuum damage mechanics

2002 ◽  
Vol 25 (1-2) ◽  
pp. 34-41 ◽  
Author(s):  
A.A Becker ◽  
T.H Hyde ◽  
W Sun ◽  
P Andersson
2012 ◽  
Vol 706-709 ◽  
pp. 1527-1532 ◽  
Author(s):  
Y. Suwa ◽  
T. Matsuno ◽  
S. Hirose ◽  
N. Fujita ◽  
A. Seto

In the present study, the effects of inclusions on the local ductility of DP steel are investigated using finite element analysis (FEA). In order to evaluate local ductility, a continuum damage mechanics (CDM) model has been incorporated into the Abaqus/Explicit® commercial finite element code. Furthermore, three-dimensional representative volume elements (RVEs) with ferrite, martensite, and inclusion phases have been used to evaluate the stress-strain response. Simulation results show that the volume fraction of the martensite as well as the difference in hardness between the ferrite and the martensite phases dominates the effect of inclusions on local ductility.


2005 ◽  
Vol 475-479 ◽  
pp. 3219-3222 ◽  
Author(s):  
Yong Sin Lee

An Eulerian finite element analysis for the steady state rolling process is addressed. This analysis combines the crystal plasticity theory for texture development as well as the continuum damage mechanics for growth of micro voids. Although an Eulerian analysis for steady state rolling has many advantages, it needs an initial assumption about the shape of control volume. However, the assumed control volume does not match the final shapes. To effectively predict the correct shape in an assumed control volume, a free surface correction algorithm and a streamline technique are introduced. Applications to plate rolling, clad rolling, and shape rolling will be given and the results will be discussed in detail.


2012 ◽  
Vol 498 ◽  
pp. 42-54 ◽  
Author(s):  
S. Benbelaid ◽  
B. Bezzazi ◽  
A. Bezazi

This paper considers damage development mechanisms in cross-ply laminates using an accurate numerical model. Under static three points bending, two modes of damage progression in cross-ply laminates are predominated: transverse cracking and delamination. However, this second mode of damage is not accounted in our numerical model. After a general review of experimental approaches of observed behavior of laminates, the focus is laid on predicting laminate behavior based on continuum damage mechanics. In this study, a continuum damage model based on ply failure criteria is presented, which is initially proposed by Ladevèze. To reveal the effect of different stacking sequence of the laminate; such as thickness and the interior or exterior disposition of the 0° and 90° oriented layers in the laminate, an equivalent damage accumulation which cover all ply failure mechanisms has been predicted. However, the solution algorithm using finite element analysis which implements progressive failure analysis is summarized. The results of the numerical computation have been justified by the previous published experimental observations of the authors.


2015 ◽  
Vol 750 ◽  
pp. 266-271 ◽  
Author(s):  
Yu Zhou ◽  
Xue Dong Chen ◽  
Zhi Chao Fan ◽  
Yi Chun Han

The creep behavior of 2.25Cr-1Mo-0.25V ferritic steel was investigated using a set of physically-based creep damage constitutive equations. The material constants were determined according to the creep experimental data, using an efficient genetic algorithm. The user-defined subroutine for creep damage evolution was developed based on the commercial finite element software ANSYS and its user programmable features (UPFs), and the numerical simulation of the stress distribution and the damage evolution of the semi V-type notched specimen during creep were studied. The results showed that the genetic algorithm is a very efficient optimization approach for the parameter identification of the creep damage constitutive equations, and finite element simulation based on continuum damage mechanics can be used to analyze and predict the creep damage evolution under multi-axial stress states.


Author(s):  
Hongliang Tuo ◽  
Xiaoping Ma ◽  
Zhixian Lu

The paper conducted bearing tests on composite pinned joints with four different stacking sequences. The bearing strength and bearing chord stiffness were obtained. The influence of stacking sequences on failure modes, bearing strength and bearing chord stiffness was discussed. Based on continuum damage mechanics, a three-dimensional finite element model of composite pinned joint under bearing load was built, where the maximum strain criterion was employed for initiation and bi-liner damage constitutive relation for revolution of fiber damage, while the physical-based Puck criterion was used for matrix damage initiation, and matrix damage revolution depended on the effective strain on the fracture plane. The failure mode, bearing strength and bearing chord stiffness of composite pinned joint were discussed with this model under which the non-linear shear behavior and in-situ strength effects were considered. Good agreements between test results and numerical simulations validates the accuracy and applicability of the finite element model.


2021 ◽  
pp. 105678952110632 ◽  
Author(s):  
George Z Voyiadjis ◽  
Bilal Ahmed ◽  
Taehyo Park

In this part II, companion article, we present the numerical review of continuum damage mechanics and plasticity in the context of finite element. The numerical advancements in local, nonlocal, and rate-dependent models are presented. The numerical algorithms, type of elements utilized in numerical analysis, the commercial software’s or in-house codes used for the analysis, iterative schemes, explicit or implicit approaches to solving finite element equations, and degree of continuity of element are discussed in this part. Lastly, some open issues in concrete damage modeling and future research needed are also discussed.


2000 ◽  
Author(s):  
Ricardo Moraes ◽  
David Nicholson

Abstract The main goal of the current investigation is to accommodate combined damage softening and thermal softening in structures that experience ductile fracture [1] due to an impulsive loading. A constitutive model first introduced by Johnson-Cook [2], which is sensitive to strain rate effects and temperature softening, is extended to explain the proposed idea. Equations are derived through continuum mechanics theory. Continuum Damage Mechanics (CDM) was first introduced by Kachanov [3] during the fifties. Since then, the topic has been under development by many authors. Numerical simulations are performed in the explicit finite element impact code LS-DYNA [4]. Constitutive equations for a viscoplastic model with damage and thermal softening are implemented in the code using a User Defined Subroutine UMAT. The Continuum Damage Mechanics (CDM) model is based on the Bonora formulation [5]. The combined material model, named UMAT 41, is added to the program static library using Digital Visual Fortran (FORTRAN 90). Using the User Defined Material, the solution of an explosive charge and of projectile impact applied to a ring-stiffened welded structure is analyzed to predict fracture. Ring-stiffened structures are widely used in ships, submarines and aircraft, which are subject to explosive or projectile attack. Results obtained using models with and without damage softening agree very well with previously published data with respect to crack paths. However, the time histories and thresholds are sensitive to the model used [6]. Projectile impact is also presented in this work.


Sign in / Sign up

Export Citation Format

Share Document