Finite Element Simulation of the Creep Behavior of 2.25Cr-1Mo-0.25V Steel Based on Continuum Damage Mechanics

2015 ◽  
Vol 750 ◽  
pp. 266-271 ◽  
Author(s):  
Yu Zhou ◽  
Xue Dong Chen ◽  
Zhi Chao Fan ◽  
Yi Chun Han

The creep behavior of 2.25Cr-1Mo-0.25V ferritic steel was investigated using a set of physically-based creep damage constitutive equations. The material constants were determined according to the creep experimental data, using an efficient genetic algorithm. The user-defined subroutine for creep damage evolution was developed based on the commercial finite element software ANSYS and its user programmable features (UPFs), and the numerical simulation of the stress distribution and the damage evolution of the semi V-type notched specimen during creep were studied. The results showed that the genetic algorithm is a very efficient optimization approach for the parameter identification of the creep damage constitutive equations, and finite element simulation based on continuum damage mechanics can be used to analyze and predict the creep damage evolution under multi-axial stress states.

Author(s):  
Yi Zhang ◽  
P-Y Ben Jar ◽  
Shifeng Xue ◽  
Lin Li

A phenomenon-based hybrid approach of experimental testing and finite element simulations is used to describe the fracture behavior of pipe-grade polyethylene. The experimental testing adopts a modified D-split test method to stretch the pipe ring (notched pipe ring) specimens that have symmetric, double-edged flat notches along the pipe direction. Two series of experimental testing were conducted: (1) monotonic loading till fracture and (2) monotonic loading to a predefined strain level, keeping constant displacement for a period of time, and then unloaded. Crosshead speeds of 0.01, 1, and 100 mm/min were used in both series of tests. Likewise, two series of finite element simulation were conducted to establish the constitutive equations, either with or without considering damage evolution during the deformation process. The constitutive equation without the consideration of damage was established using results from the first series of experimental testing, and that with damage was inspired from the second series which showed the decrease in unloading modulus with the increase of crosshead speed or the predefined strain level. The results show that with the consideration of damage evolution, the constitutive equations enable the finite element simulation to determine the whole stress–strain relationship during both necking and fracture processes.


2008 ◽  
Vol 131 (2) ◽  
Author(s):  
S. Peravali ◽  
T. H. Hyde ◽  
K. A. Cliffe ◽  
S. B. Leen

Past studies from creep tests on uniaxial specimens and Bridgman notch specimens, for a P91 weld metal, showed that anisotropic behavior (more specifically transverse isotropy) occurs in the weld metal, both in terms of creep (steady-state) strain rate behavior and rupture times (viz., damage evolution). This paper describes the development of a finite element (FE) continuum damage mechanics methodology to deal with anisotropic creep and anisotropic damage for weld metal. The method employs a second order damage tensor following the work of Murakami and Ohno (1980, “A Continuum Theory of Creep and Creep Damage,” Creep in Structures, A. R. S. Ponter and D. R. Hayhurst, eds., Springer-Verlag, Berlin, pp. 422–444) along with a novel rupture stress approach to define the evolution of this tensor, taking advantage of the transverse isotropic nature of the weld metal, to achieve a reduction in the number of material constants required from test data (and hence tests) to define the damage evolution. Hill’s anisotropy potential theory is employed to model the secondary creep. The theoretical model is implemented in a material behavior subroutine within the general-purpose nonlinear FE code ABAQUS (ABAQUS User’s Manual, Version 6.6, 6006, Hibbitt, Karlsson and Sorenson, Inc., Providence, RI). The validation of the implementation against established isotropic continuum damage mechanics solutions for the isotropic case is described. A procedure for calibrating the multiaxial damage constants from notched bar test data is described for multiaxial implementations. Also described is a study on the effect of uniaxial specimen orientation on anisotropic damage evolution.


The creep rupture of circumferentially notched, circular tension bars which are subjected to constant load for long periods at constant temperature is studied both experimentally and by using a time-iterative numerical procedure which describes the formation and growth of creep damage as a field quantity. The procedure models the development of failed or cracked regions of material due to the growth and linkage of grain boundary defects. Close agreement is shown between experimental and theoretical values of the representative rupture stress, of the zones of creep damage and of the development of cracks for circular (Bridgman, Studies in large plastic flow and fracture , New York: McGraw-Hill (1952)) and British Standard notched specimens (B.S. no. 3500 (1969)). The minimum section of the circular notch is shown to be subjected to relatively uniform states of multi-axial stress and damage while the B.S. notch is shown to be subjected to non-uniform stress and damage fields in which single cracks grow through relatively undamaged material. The latter situation is shown to be analogous to the growth of a discrete crack in a lightly damaged continuum. The continuum damage mechanics theory presented here is shown to be capable of accurately predicting these extreme types of behaviour.


Author(s):  
Hongliang Tuo ◽  
Xiaoping Ma ◽  
Zhixian Lu

The paper conducted bearing tests on composite pinned joints with four different stacking sequences. The bearing strength and bearing chord stiffness were obtained. The influence of stacking sequences on failure modes, bearing strength and bearing chord stiffness was discussed. Based on continuum damage mechanics, a three-dimensional finite element model of composite pinned joint under bearing load was built, where the maximum strain criterion was employed for initiation and bi-liner damage constitutive relation for revolution of fiber damage, while the physical-based Puck criterion was used for matrix damage initiation, and matrix damage revolution depended on the effective strain on the fracture plane. The failure mode, bearing strength and bearing chord stiffness of composite pinned joint were discussed with this model under which the non-linear shear behavior and in-situ strength effects were considered. Good agreements between test results and numerical simulations validates the accuracy and applicability of the finite element model.


2021 ◽  
pp. 105678952110632 ◽  
Author(s):  
George Z Voyiadjis ◽  
Bilal Ahmed ◽  
Taehyo Park

In this part II, companion article, we present the numerical review of continuum damage mechanics and plasticity in the context of finite element. The numerical advancements in local, nonlocal, and rate-dependent models are presented. The numerical algorithms, type of elements utilized in numerical analysis, the commercial software’s or in-house codes used for the analysis, iterative schemes, explicit or implicit approaches to solving finite element equations, and degree of continuity of element are discussed in this part. Lastly, some open issues in concrete damage modeling and future research needed are also discussed.


2000 ◽  
Author(s):  
Ricardo Moraes ◽  
David Nicholson

Abstract The main goal of the current investigation is to accommodate combined damage softening and thermal softening in structures that experience ductile fracture [1] due to an impulsive loading. A constitutive model first introduced by Johnson-Cook [2], which is sensitive to strain rate effects and temperature softening, is extended to explain the proposed idea. Equations are derived through continuum mechanics theory. Continuum Damage Mechanics (CDM) was first introduced by Kachanov [3] during the fifties. Since then, the topic has been under development by many authors. Numerical simulations are performed in the explicit finite element impact code LS-DYNA [4]. Constitutive equations for a viscoplastic model with damage and thermal softening are implemented in the code using a User Defined Subroutine UMAT. The Continuum Damage Mechanics (CDM) model is based on the Bonora formulation [5]. The combined material model, named UMAT 41, is added to the program static library using Digital Visual Fortran (FORTRAN 90). Using the User Defined Material, the solution of an explosive charge and of projectile impact applied to a ring-stiffened welded structure is analyzed to predict fracture. Ring-stiffened structures are widely used in ships, submarines and aircraft, which are subject to explosive or projectile attack. Results obtained using models with and without damage softening agree very well with previously published data with respect to crack paths. However, the time histories and thresholds are sensitive to the model used [6]. Projectile impact is also presented in this work.


Author(s):  
S. Peravali ◽  
T. H. Hyde ◽  
K. A. Cliffe ◽  
S. B. Leen

Past studies from creep tests on uniaxial specimens and Bridgman notch specimens, for a P91 weld metal, showed that anisotropic behaviour (more specifically transverse isotropy) occurs in the weld metal, both in terms of creep (steady-state) strain rate behaviour and rupture times (viz. damage evolution). This paper describes the development of a finite element (FE) continuum damage mechanics methodology to deal with anisotropic creep and anisotropic damage for weld metal. The method employs a second order damage tensor following the work of Murakami and Ohno [1] along with a novel rupture stress approach to define the evolution of this tensor, taking advantage of the transverse isotropic nature of the weld metal, to achieve a reduction in the number of material constants required from test data (and hence tests) to define the damage evolution. Hill’s anisotropy potential theory is employed to model the secondary creep. The theoretical model is implemented in a material behaviour subroutine within the general-purpose, non-linear FE code ABAQUS [2]. The validation of the implementation against established isotropic continuum damage mechanics solutions for the isotropic case is described. A procedure for calibrating the multiaxial damage constants from notched bar test data is described for multiaxial implementations. Also described is a study on the effect of uniaxial specimen orientation on anisotropic damage evolution.


Sign in / Sign up

Export Citation Format

Share Document