scholarly journals Extragalactic background light absorption signal in the TeV γ-ray spectra of blazars

2000 ◽  
Vol 12 (4) ◽  
pp. 217-238 ◽  
Author(s):  
V.V. Vassiliev
2011 ◽  
Vol 7 (S284) ◽  
pp. 442-445
Author(s):  
Alberto Domínguez

AbstractThe extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for γ-ray astronomy. However, the overall spectrum of the EBL between 0.1 and 1000 μm has never been determined directly, neither from observed luminosity functions (LFs), over a wide redshift range, nor from any multiwavelength observation of galaxy spectral energy distributions (SEDs). The evolving overall spectrum of the EBL is derived here utilizing a novel method based on observations only. It is emphasized that the local EBL seems already well constrained from the UV up to the mid-IR. Different independent methodologies such as direct measurement, galaxy counts, γ-ray attenuation and realistic EBL modelings point towards the same EBL intensity level. Therefore, a relevant contribution from Pop III stars to the local EBL seems unlikely.


2008 ◽  
Author(s):  
Martin Raue ◽  
Tanja Kneiske ◽  
Daniel Mazin ◽  
Felix A. Aharonian ◽  
Werner Hofmann ◽  
...  

2019 ◽  
Vol 885 (2) ◽  
pp. 137 ◽  
Author(s):  
A. Domínguez ◽  
R. Wojtak ◽  
J. Finke ◽  
M. Ajello ◽  
K. Helgason ◽  
...  

1987 ◽  
Vol 117 ◽  
pp. 414-414
Author(s):  
Jonathan C. McDowell

It has been proposed (e.g. Carr, Bond and Arnett 1984) that the first generation of stars may have been Very Massive Objects (VMOs, of mass above 200 M⊙) which existed at large redshifts and left a large fraction of the mass of the universe in black hole remnants which now provide the dynamical ‘dark matter’. The radiation from these stars would be present today as extragalactic background light. For stars with density parameter Ω* which convert a fraction ϵ of their rest-mass to radiation at a redshift of z, the energy density of background radiation in units of the critical density is ΩR = εΩ* / (1+z). The VMOs would be far-ultraviolet sources with effective temperatures of 105 K. If the radiation is not absorbed, the constraints provided by measurements of background radiation imply (for H =50 km/s/Mpc) that the stars cannot close the universe unless they formed at a redshift of 40 or more. To provide the dark matter (of one-tenth closure density) the optical limits imply that they must have existed at redshifts above 25.


2010 ◽  
Author(s):  
Asantha Cooray ◽  
Jamie Bock ◽  
Mitsunobu Kawada ◽  
Brian Keating ◽  
Dae-Hee Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document