Comments on the article “Affinity distributions and acid base properties of homogeneous and heterogeneous sorbents: exact results versus experimental data inversion”

1997 ◽  
Vol 122 (1-3) ◽  
pp. 265-266
Author(s):  
J.A. Schwarz
Author(s):  
E. G. Kosandrovich ◽  
L. N. Shachenkova ◽  
A. L. Pushkarchuk ◽  
T. V. Bez’yazychnaya ◽  
V. S. Soldatov

A mathematical model for description of the sorption capacity of ion exchangers on alkaline compounds protonizable in aqueous solutions (exemplified by ammonia, mono-, diand triethylamine) was proposed. The Henry’s constants for these substances were experimentally determined. The model accounts for the concentration and acid-base properties of the sorbate, relative air humidity, acid-base properties and exchange capacity of the ion exchanger, as well as spatial availability of functional groups for interaction under conditions of limited permeability of polymeric ion exchanger. The applicability of the model is illustrated by processing the experimental results on the sorption of ammonia and ethylamines by fibrous carboxylic and sulfonic cation exchangers. Good agreement between the calculated and experimental data is observed.


1982 ◽  
Vol 47 (11) ◽  
pp. 2882-2889
Author(s):  
Nadezhda Likhareva ◽  
Ladislav Šůcha ◽  
Miloslav Suchánek

Two new compounds from the formazan series, viz. 1,3-diphenyl-5-(1H-tetrazol-2-yl)formazan and 1,3-diphenyl-5-(2H-1,2,4-triazol-3-yl)formazan, were prepared, and the dissociation constants and molar absorptivities of all of their acid-base species were determined spectrophotometrically employing the SPEKTFOT computer program.


1984 ◽  
Vol 49 (10) ◽  
pp. 2355-2362 ◽  
Author(s):  
Juraj Leško ◽  
Marie Dorušková ◽  
Jan Tržil

Boron oxide in the Na2O.P2O5-x B2O3 system behaves as a Lux base. Its addition to Na2O.P2O5 brings about transformation of a Co(II) indicator from octahedral to tetrahedral configuration, increase in the optical basicity ΛPb(II), increase in the relative basicity of the melt as determined by means of a galvanic cell, and depolymerization reactions releasing PO43- ions. In the Na2O-B2O3 system free of P2O5, boron oxide behaves as a Lux acid. The amphoretic nature of B2O3 is explained in terms of Lux's acid-base theory extended in analogy with the protolysis theory. The theoretical optical basicity values do not indicate the amphoretic behaviour of B2O3 because in this approach boron oxide is a priori regarded as more acidic than Na2O.P2O5.


2016 ◽  
Vol 30 (5) ◽  
pp. e3623 ◽  
Author(s):  
Bagrat A. Shainyan ◽  
Nina N. Chipanina ◽  
Larisa P. Oznobikhina ◽  
Vladimir I. Meshcheryakov

Sign in / Sign up

Export Citation Format

Share Document