scholarly journals The Role of High Frequency Ultrasound in Multimodality Small Animal Imaging for Cancer Research

2009 ◽  
Vol 17 (2) ◽  
pp. 86-97 ◽  
Author(s):  
Ai-Ho Liao ◽  
Pai-Chi Li
2020 ◽  
Vol 14 ◽  
Author(s):  
Annunziata D'Elia ◽  
Sara Schiavi ◽  
Andrea Soluri ◽  
Roberto Massari ◽  
Alessandro Soluri ◽  
...  

Molecular imaging, which allows the real-time visualization, characterization and measurement of biological processes, is becoming increasingly used in neuroscience research. Scintigraphy techniques such as single photon emission computed tomography (SPECT) and positron emission tomography (PET) provide qualitative and quantitative measurement of brain activity in both physiological and pathological states. Laboratory animals, and rodents in particular, are essential in neuroscience research, providing plenty of models of brain disorders. The development of innovative high-resolution small animal imaging systems together with their radiotracers pave the way to the study of brain functioning and neurotransmitter release during behavioral tasks in rodents. The assessment of local changes in the release of neurotransmitters associated with the performance of a given behavioral task is a turning point for the development of new potential drugs for psychiatric and neurological disorders. This review addresses the role of SPECT and PET small animal imaging systems for a better understanding of brain functioning in health and disease states. Brain imaging in rodent models faces a series of challenges since it acts within the boundaries of current imaging in terms of sensitivity and spatial resolution. Several topics are discussed, including technical considerations regarding the strengths and weaknesses of both technologies. Moreover, the application of some of the radioligands developed for small animal nuclear imaging studies is discussed. Then, we examine the changes in metabolic and neurotransmitter activity in various brain areas during task-induced neural activation with special regard to the imaging of opioid, dopaminergic and cannabinoid receptors. Finally, we discuss the current status providing future perspectives on the most innovative imaging techniques in small laboratory animals. The challenges and solutions discussed here might be useful to better understand brain functioning allowing the translation of preclinical results into clinical applications.


Author(s):  
Akitatsu Hayashi ◽  
Giuseppe Visconti ◽  
Guido Giacalone ◽  
Nobuko Hayashi ◽  
Hidehiko Yoshimatsu

Abstract Background Currently, microsurgeons are in the era of supermicrosurgery and perforator flap reconstruction. As these reconstructions frequently utilize vessels that are smaller than a single millimeter, understanding of location of lymphatic vessels and perforator anatomy preoperatively is essential. To change with the times, the role of ultrasound has changed from just an adjunct to primary imaging of the choice in reconstructive supermicrosurgery. Recently, a novel ultrasonographic technique involving the use of ultra-high frequency ultrasound (UHFUS) frequencies has entered the scene, and appears a promising tool in surgical planning. Methods The literatures on the applications of UHFUS in reconstructive supermicrosurgery were retrieved and reviewed from more than 60 literatures have been published on the surgical applications of UHFUS. Results Nine studies were retrieved from the literature on the applications of UHFUS in reconstructive supermicrosurgery. The articles report both application for lymphatic surgery and perforator flaps. Conclusions UHFUS application involves an increasing number of reconstructive supermicrosurgery field. UHFUS is a valuable and powerful tool for any reconstructive surgeons who are interested in performing supermicrosurgery.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Wei Chen ◽  
Jiun-Yu Chen ◽  
Yu-Tang Tung ◽  
Hsiao-Ling Chen ◽  
Chia-Wen Kuo ◽  
...  

The animals used in liver fibrosis studies must usually be sacrificed. Ultrasound has been demonstrated to have the ability to diagnose hepatic fibrosis and cirrhosis in experimental small-animal models. However, few studies have used high-frequency ultrasound (HFU, 40 MHz) to monitor changes in the rat liver and other hollow organs longitudinally. In this study, liver fibrosis was induced by administering dimethylnitrosamine (DMN) in SD rats, aged 8 weeks, for three consecutive days per week for up to 4 weeks. A Chinese herbal medicine Yi Guan Jian (YGJ) was orally administered (1.8 g/kg daily) to DMN-induced liver fibrosis rats for 2 weeks. Compared with the normal control rats, rats treated with DMN for either 2 weeks or 4 weeks had significantly lower body weights, liver indexes and elevation of hydroxyproline, GOT, and GPT contents. YGJ herbal treatment remarkably prevented rats from DMN-induced liver fibrosis. The HFU scoring results among the normal controls, 2-week DMN-treated rats, 4-week DMN-treated rats, and combined 2-week YGJ therapy with 4-week DMN-treated rats also reached statistical significance. Thus, HFU is an accurate tool for the longitudinal analysis of liver fibrosis progression in small-animal models, and the YGJ may be useful in reversing the development of hepatic fibrosis.


2009 ◽  
Vol 35 (7) ◽  
pp. 1198-1208 ◽  
Author(s):  
Jonathan Mamou ◽  
Orlando Aristizábal ◽  
Ronald H. Silverman ◽  
Jeffrey A. Ketterling ◽  
Daniel H. Turnbull

Sign in / Sign up

Export Citation Format

Share Document