Cardiac risk screening of peripheral arterial surgical patients by the use of combined simple clinical and non-invasive cardiodynamic parameters

1993 ◽  
Vol 7 (2) ◽  
pp. 180-187 ◽  
Author(s):  
Lennart Jivegård ◽  
Hengo Haljamäe ◽  
Jan Holm ◽  
Sten R. Johansson
VASA ◽  
2015 ◽  
Vol 44 (5) ◽  
pp. 341-348 ◽  
Author(s):  
Marc Husmann ◽  
Vincenzo Jacomella ◽  
Christoph Thalhammer ◽  
Beatrice R. Amann-Vesti

Abstract. Increased arterial stiffness results from reduced elasticity of the arterial wall and is an independent predictor for cardiovascular risk. The gold standard for assessment of arterial stiffness is the carotid-femoral pulse wave velocity. Other parameters such as central aortic pulse pressure and aortic augmentation index are indirect, surrogate markers of arterial stiffness, but provide additional information on the characteristics of wave reflection. Peripheral arterial disease (PAD) is characterised by its association with systolic hypertension, increased arterial stiffness, disturbed wave reflexion and prognosis depending on ankle-brachial pressure index. This review summarises the physiology of pulse wave propagation and reflection and its changes due to aging and atherosclerosis. We discuss different non-invasive assessment techniques and highlight the importance of the understanding of arterial pulse wave analysis for each vascular specialist and primary care physician alike in the context of PAD.


Author(s):  
Patrick Veit-Haibach ◽  
Martin W. Huellner ◽  
Martin Banyai ◽  
Sebastian Mafeld ◽  
Johannes Heverhagen ◽  
...  

Abstract Objectives The purpose of this study was the assessment of volumetric CT perfusion (CTP) of the lower leg musculature in patients with symptomatic peripheral arterial disease (PAD) before and after interventional revascularisation. Methods Twenty-nine consecutive patients with symptomatic PAD of the lower extremities requiring interventional revascularisation were assessed prospectively. All patients underwent a CTP scan of the lower leg, and hemodynamic and angiographic assessment, before and after intervention. Ankle-brachial pressure index (ABI) was determined. CTP parameters were calculated with a perfusion software, acting on a no outflow assumption. A sequential two-compartment model was used. Differences in CTP parameters were assessed with non-parametric tests. Results The cohort consisted of 24 subjects with an occlusion, and five with a high-grade stenosis. The mean blood flow before/after (BFpre and BFpost, respectively) was 7.42 ± 2.66 and 10.95 ± 6.64 ml/100 ml*min−1. The mean blood volume before/after (BVpre and BVpost, respectively) was 0.71 ± 0.35 and 1.25 ± 1.07 ml/100 ml. BFpost and BVpost were significantly higher than BFpre and BVpre in the treated limb (p = 0.003 and 0.02, respectively), but not in the untreated limb (p = 0.641 and 0.719, respectively). Conclusions CTP seems feasible for assessing hemodynamic differences in calf muscles before and after revascularisation in patients with symptomatic PAD. We could show that CTP parameters BF and BV are significantly increased after revascularisation of the symptomatic limb. In the future, this quantitative method might serve as a non-invasive method for surveillance and therapy control of patients with peripheral arterial disease. Key Points • CTP imaging of the lower limb in patients with symptomatic PAD seems feasible for assessing hemodynamic differences before and after revascularisation in PAD patients. • This quantitative method might serve as a non-invasive method, for surveillance and therapy control of patients with PAD.


2015 ◽  
Vol 27 (03) ◽  
pp. 1550021
Author(s):  
S. Mohanalakshmi ◽  
A. Sivasubramanian

Arterial stiffness, resulting in loss of the elastic properties of arteries walls, is an indicator of cardiovascular risk, though the presence of disease is not clinically evident. Augmentation index is an important biomarker of arterial stiffness by which the cardiac risk of the patient can be diagnosed. The current paper outlines the non-invasive assessment of arterial stiffness by analyzing the morphology or contour of PhotoPlethysmoGraph (PPG) signal. PPG pulse was optically acquired with the developed photometric measurement device and the desired features were extracted to determine PPG augmentation Index (PAI) through advanced signal processing implemented in MATLAB. PAI was quantified by the fourth derivative of the signal by enhancing the location of inflection point (augmentation point) after conditioning the signal by efficient pre-processing and filtering techniques. The results reveal that the statistical distribution of PAI for healthy subjects presents a very low value and a very tight distribution. On the contrary, patients have a higher value of PAI and a wide asymmetrical shape of distribution. This work also establishes the usefulness of PPG contour analysis in the investigation of changes in the elastic properties of the vascular system. In conclusion, PAI has revealed to be a non-invasive indicator for arterial stiffness assessments.


1999 ◽  
Vol 83 (5) ◽  
pp. 754-758 ◽  
Author(s):  
Alberto Rafael Yataco ◽  
Mary Concepta Corretti ◽  
Andrew William Gardner ◽  
Christopher Joseph Womack ◽  
Leslie Ira Katzel

Author(s):  
Lu Wang ◽  
Sardar Ansari ◽  
Kevin R. Ward ◽  
Kayvan Najarian ◽  
Kenn R. Oldham

Autoregulatory dynamics of the cardiovascular system play an important role in maintaining oxygenated blood transportation throughout the human body. In this work, a feedback dynamics model of the cardiovascular system with respect to heartrate and peripheral vascular resistance effects on longer-term blood pressure changes in the systemic circulation is presented. The model is identified from data taken from a swine test subject, instrumented in part with a wearable, non-invasive sensor for estimating peripheral arterial radius. Comparative simulations for the open and close loop model highlight significantly changed hemodynamics after hemorrhage.


2010 ◽  
Vol 31 (9) ◽  
pp. 1142-1148 ◽  
Author(s):  
R. Rubinshtein ◽  
J. T. Kuvin ◽  
M. Soffler ◽  
R. J. Lennon ◽  
S. Lavi ◽  
...  

2015 ◽  
Author(s):  
K. J. Williams ◽  
A. Babber ◽  
R. Ravikumar ◽  
A. H. Davies

Sign in / Sign up

Export Citation Format

Share Document