10.11 The relation between motor deficit and proprioceptiveloss after large-fibre sensory neuropathy

2005 ◽  
Vol 21 ◽  
pp. S61
Author(s):  
M. Hulliger ◽  
R.W Banks
2019 ◽  
Author(s):  
Júlia Canet-Pons ◽  
Nesli-Ece Sen ◽  
Aleksandar Arsovic ◽  
Luis-Enrique Almaguer-Mederos ◽  
Melanie V. Halbach ◽  
...  

AbstractLarge polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.


Author(s):  
Ross Parry ◽  
Fabrice R Sarlegna ◽  
Nathanaël Jarrassé ◽  
Agnes Roby-Brami

The purpose of this study was to determine the contributions of feedforward and feedback processes on grip force regulation and object orientation during functional manipulation tasks. One patient with massive somatosensory loss resulting from large fibre sensory neuropathy, and ten control participants were recruited. Three experiments were conducted: 1) perturbation to static holding; 2) discrete vertical movement; and 3) functional grasp and place. The availability of visual feedback was also manipulated to assess the nature of compensatory mechanisms. Results from experiment 1 indicated that both the deafferented patient and controls used anticipatory grip force adjustments prior to self-induced perturbation to static holding. The patient exhibited increased grip response time, but the magnitude of grip force adjustments remained correlated with perturbation forces in the self-induced and external perturbation conditions. In experiment 2, the patient applied peak grip force substantially in advance of maximum load force. Unlike controls, the patient's ability to regulate object orientation was impaired without visual feedback. In experiment 3, the duration of unloading, transport and release phases were longer for the patient, with increased deviation of object orientation at phase transitions. These findings show that the deafferented patient uses distinct modes of anticipatory control according to task constraints, and that responses to perturbations are mediated by alternative afferent information. The loss of somatosensory feedback thus appears to impair control of object orientation, while variation in the temporal organization of functional tasks may reflect strategies to mitigate object instability associated with changes in movement dynamics.


Author(s):  
Albert Larbrisseau ◽  
Michel Vanasse ◽  
Pierre Brochu ◽  
Gaétan Jasmin

ABSTRACT:Andermann et al. described in 1972 an autosomal recessive inherited syndrome which associates agenesis of the corpus callosum, mental deficiency, and a peripheral motor deficit. We had the opportunity to study in detail 15 patients affected by this syndrome. As in the cases previously reported, the families of these children all originated from Charlevoix County and the Saguenay-Lac St-Jean area in the Province of Quebec.Clinically, these patients have a characteristic facies and moderate mental retardation associated with a progressive motor neuropathy leading to loss of ambulation by adolescence and progressive scoliosis. In 13 of these 15 patients, neuroradiological investigation has shown either total or partial agenesis of the corpus callosum. In every patient in whom these tests were done, sensory nerve action potentials were absent and motor nerve conduction velocities reduced. We also found neurogenic abnormalities both on EMG and neuromuscular biopsies. These abnormalities are similar to those described in Friedreich’s ataxia and in hereditary motor and sensory neuropathy type II, although in our patients the motor deficit is much more severe than in these diseases.The pathogenesis of the peripheral nervous system involvement is still unknown since there have so far been no autopsy studies of this syndrome.


1995 ◽  
Vol 73 (2) ◽  
pp. 234-245 ◽  
Author(s):  
J. D. Cole ◽  
W. L. Merton ◽  
G. Barrett ◽  
H. A. Katifi ◽  
R.-D. Treede

The results from experiments in various modalities of evoked potentials are described in a subject with a complete large peripheral neuropathy below the neck. He has no tactile or position sensitivity below that level, but has retained fatigue, pain, and temperature sensation. Percutaneous electrical stimulation of peripheral nerves led to scalp recorded evoked potentials with thresholds and propagation velocities compatible with conduction along A-δ peripheral pathways. CO2 laser evoked potentials were similar to those seen in controls, further support for intact A-δ peripheral fibres. Movement-related cortical potentials (MRCPs) were recorded associated with active and passive movement of the middle finger. The former were normal, evidence that the termination of the MRCP is not dependent on peripheral feedback. By comparing passive MRCPs between controls and the subject it was possible to establish which parts of the potentials are visual and which are proprioceptive and to gain evidence of central reorganisation in the subject. Magnetic brain stimulation was used to show that the subject did not perceive induced movement, had a normal centrally originating silent period, and could focus his attention during real and imagined movement of the finger more successfully than could normal controls.Key words: sensory and motor evoked potentials, sensory neuropathy.


Pain ◽  
1993 ◽  
Vol 53 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Rolf-Detlef Treede ◽  
Jonathan D. Cole

2006 ◽  
Vol 37 (01) ◽  
Author(s):  
L Schöls ◽  
R Schüle ◽  
B Mauko ◽  
M Auer-Grumbach ◽  
L Schöls

2020 ◽  
Vol 132 (6) ◽  
pp. 1683-1691 ◽  
Author(s):  
Kazuya Motomura ◽  
Lushun Chalise ◽  
Fumiharu Ohka ◽  
Kosuke Aoki ◽  
Kuniaki Tanahashi ◽  
...  

OBJECTIVELower-grade gliomas (LGGs) are often observed within eloquent regions, which indicates that tumor resection in these areas carries a potential risk for neurological disturbances, such as motor deficit, language disorder, and/or neurocognitive impairments. Some patients with frontal tumors exhibit severe impairments of neurocognitive function, including working memory and spatial awareness, after tumor removal. The aim of this study was to investigate neurocognitive and functional outcomes of frontal LGGs in both the dominant and nondominant hemispheres after awake brain mapping.METHODSData from 50 consecutive patients with diffuse frontal LGGs in the dominant and nondominant hemispheres who underwent awake brain surgery between December 2012 and September 2018 were retrospectively analyzed. The goal was to map neurocognitive functions such as working memory by using working memory tasks, including digit span testing and N-back tasks.RESULTSDue to awake language mapping, the frontal aslant tract was frequently identified as a functional boundary in patients with left superior frontal gyrus tumors (76.5%). Furthermore, functional boundaries were identified while evaluating verbal and spatial working memory function by stimulating the dorsolateral prefrontal cortex using the digit span and visual N-back tasks in patients with right superior frontal gyrus tumors (7.1%). Comparing the preoperative and postoperative neuropsychological assessments from the Wechsler Adult Intelligence Scale–Third Edition (WAIS-III) and Wechsler Memory Scale–Revised (WMS-R), significant improvement following awake surgery was observed in mean Perceptual Organization (Z = −2.09, p = 0.04) in WAIS-III scores. Postoperative mean WMS-R scores for Visual Memory (Z = −2.12, p = 0.03) and Delayed Recall (Z = −1.98, p = 0.04) were significantly improved compared with preoperative values for every test after awake surgery. No significant deterioration was noted with regard to neurocognitive functions in a comprehensive neuropsychological test battery. In the postoperative course, early transient speech and motor disturbances were observed in 30.0% and 28.0% of patients, respectively. In contrast, late permanent speech and motor disturbances were observed in 0% and 4.0%, respectively.CONCLUSIONSIt is noteworthy that no significant postoperative deterioration was identified compared with preoperative status in a comprehensive neuropsychological assessment. The results demonstrated that awake functional mapping enabled favorable neurocognitive and functional outcomes after surgery in patients with diffuse frontal LGGs.


Sign in / Sign up

Export Citation Format

Share Document