scholarly journals NMR structure of the N-terminal domain of E. coli DnaB helicase: implications for structure rearrangements in the helicase hexamer

Structure ◽  
1999 ◽  
Vol 7 (6) ◽  
pp. 681-690 ◽  
Author(s):  
Johan Weigelt ◽  
Susan E Brown ◽  
Caroline S Miles ◽  
Nicholas E Dixon ◽  
Gottfried Otting
PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5412 ◽  
Author(s):  
Jesper S. Oeemig ◽  
O.H. Samuli Ollila ◽  
Hideo Iwaï

The TonB protein plays an essential role in the energy transduction system to drive active transport across the outer membrane (OM) using the proton-motive force of the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain (CTD) of TonB protein is known to interact with the conserved TonB box motif of TonB-dependent OM transporters, which likely induces structural changes in the OM transporters. Several distinct conformations of differently dissected CTDs of Escherichia coli TonB have been previously reported. Here we determined the solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB (PaTonB-96). The structure shows a monomeric structure with the flexible C-terminal region (residues 338–342), different from the NMR structure of E. coli TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by 15N relaxation analysis and molecular dynamics simulation. We created models for the PaTonB-96/TonB box interaction and propose that the internal fluctuations of PaTonB-96 makes it more accessible for the interactions with the TonB box and possibly plays a role in disrupting the plug domain of the TonB-dependent OM transporters.


2005 ◽  
Vol 16 (4) ◽  
pp. 2049-2057 ◽  
Author(s):  
Qi Zhong ◽  
Martin J. Watson ◽  
Cheri S. Lazar ◽  
Andrea M. Hounslow ◽  
Jonathan P. Waltho ◽  
...  

The sorting nexin (SNX) family of proteins is characterized by sequence-related phox homology (PX) domains. A minority of PX domains bind with high affinity to phosphatidylinositol 3-phosphate [PI(3)P], whereas the majority of PX domains exhibit low affinity that is insufficient to target them to vesicles. SNX1 is located on endosomes, but its low affinity PX domain fails to localize in vivo. The NMR structure of the PX domain of SNX1 reveals an overall fold that is similar to high-affinity PX domains. However, the phosphatidylinositol (PI) binding pocket of the SNX1 PX domain is incomplete; regions of the pocket that are well defined in high-affinity PX domains are highly mobile in SNX1. Some of this mobility is lost upon binding PI(3)P. The C-terminal domain of SNX1 is a long helical dimer that localizes to vesicles but not to the early endosome antigen-1–containing vesicles where endogenous SNX1 resides. Thus, the obligate dimerization of SNX1 that is driven by the C-terminal domain creates a high-affinity PI binding species that properly targets the holo protein to endosomes.


2014 ◽  
Vol 187 (2) ◽  
pp. 174-186 ◽  
Author(s):  
Gabriel Demo ◽  
Veronika Papoušková ◽  
Jan Komárek ◽  
Pavel Kadeřávek ◽  
Olga Otrusinová ◽  
...  

2012 ◽  
Vol 287 (45) ◽  
pp. 38231-38243 ◽  
Author(s):  
Hannah V. McCue ◽  
Pryank Patel ◽  
Andrew P. Herbert ◽  
Lu-Yun Lian ◽  
Robert D. Burgoyne ◽  
...  

2000 ◽  
Vol 28 (5) ◽  
pp. A248-A248
Author(s):  
M. A. Griep ◽  
S. Bhattacharyya ◽  
S. K. Johnson
Keyword(s):  
E Coli ◽  

2008 ◽  
Vol 17 (2) ◽  
pp. 205-215 ◽  
Author(s):  
Matthew Devany ◽  
Ferdinand Kappes ◽  
Kuan-Ming Chen ◽  
David M. Markovitz ◽  
Hiroshi Matsuo

2001 ◽  
Vol 183 (2) ◽  
pp. 570-579 ◽  
Author(s):  
Michal Gropp ◽  
Yael Strausz ◽  
Miriam Gross ◽  
Gad Glaser

ABSTRACT The E. coli RelA protein is a ribosome-dependent (p)ppGpp synthetase that is activated in response to amino acid starvation. RelA can be dissected both functionally and physically into two domains: The N-terminal domain (NTD) (amino acids [aa] 1 to 455) contains the catalytic domain of RelA, and the C-terminal domain (CTD) (aa 455 to 744) is involved in regulating RelA activity. We used mutational analysis to localize sites important for RelA activity and control in these two domains. We inserted two separate mutations into the NTD, which resulted in mutated RelA proteins that were impaired in their ability to synthesize (p)ppGpp. When we caused the CTD inrelA + cells to be overexpressed, (p)ppGpp accumulation during amino acid starvation was negatively affected. Mutational analysis showed that Cys-612, Asp-637, and Cys-638, found in a conserved amino acid sequence (aa 612 to 638), are essential for this negative effect of the CTD. When mutations corresponding to these residues were inserted into the full-length relA gene, the mutated RelA proteins were impaired in their regulation. In attempting to clarify the mechanism through which the CTD regulates RelA activity, we found no evidence for competition for ribosomal binding between the normal RelA and the overexpressed CTD. Results from CyaA complementation experiments of the bacterial two-hybrid system fusion plasmids (G. Karimova, J. Pidoux, A. Ullmann, and D. Ladant, Proc. Natl. Acad. Sci. USA 95:5752–5756, 1998) indicated that the CTD (aa 564 to 744) is involved in RelA-RelA interactions. Our findings support a model in which RelA activation is regulated by its oligomerization state.


1997 ◽  
Vol 231 (1) ◽  
pp. 126-130 ◽  
Author(s):  
Caroline S. Miles ◽  
Johan Weigelt ◽  
N.Patrick J. Stamford ◽  
Nada Dammerova ◽  
Gottfried Otting ◽  
...  

2007 ◽  
Vol 76 (3) ◽  
pp. 1314-1318 ◽  
Author(s):  
Michael R. Baldwin ◽  
William H. Tepp ◽  
Amanda Przedpelski ◽  
Christina L. Pier ◽  
Marite Bradshaw ◽  
...  

ABSTRACT Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans and are classified as category A toxins. There are seven serotypes of BoNTs defined by the lack of cross-serotype toxin neutralization. Thus, an effective vaccine must neutralize each BoNT serotype. BoNTs are organized as dichain A-B toxins, where the N-terminal domain (light chain) is a zinc metalloprotease targeting soluble NSF attachment receptor proteins that is linked to the C-terminal domain (heavy chain [HC]) by a disulfide bond. The HC comprises a translocation domain and a C-terminal receptor binding domain (HCR). HCRs of the seven serotypes of BoNTs (hepta-HCR) were engineered for expression in Escherichia coli, and each HCR was purified from E. coli lysates. Immunization of mice with the E. coli-derived hepta-serotype HCR vaccine elicited an antibody response to each of the seven BoNT HCRs and neutralized challenge by 10,000 50% lethal doses of each of the seven BoNT serotypes. A solid-phase assay showed that the anti-hepta-serotype HCR sera inhibited the binding of HCR serotypes A and B to the ganglioside GT1b, the first step in BoNT intoxication of neurons. This is the first E. coli-derived vaccine that effectively neutralizes each of the seven BoNT serotypes.


Sign in / Sign up

Export Citation Format

Share Document