tonb protein
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 2)

H-INDEX

17
(FIVE YEARS 0)

mSphere ◽  
2021 ◽  
Author(s):  
Hannah Schätzle ◽  
Sergio Arévalo ◽  
Leonard Fresenborg ◽  
Hans-Michael Seitz ◽  
Enrique Flores ◽  
...  

The genomes of many organisms encode more than one TonB protein, and their number does not necessarily correlate with that of TonB-dependent outer membrane transporters. Consequently, specific as well as redundant functions of the different TonB proteins have been identified.


2021 ◽  
Author(s):  
Kamolrat Somboon ◽  
Oliver Melling ◽  
Maylis Lejeune ◽  
Glaucia M.S. Pinheiro ◽  
Annick Paquelin ◽  
...  

Energized nutrient import in bacteria needs the interaction between a TonB-dependent transporter (TBDT) and a TonB protein. The mechanism of energy and signal transfer between these two proteins is not well understood. They belong to two membranes separated by the periplasmic space and possess each a disordered and flexible region. Therefore, the membranes, their distance and geometrical constraints together with the protein dynamics are important factors for deciphering this trans-envelope system. Here we report the first example of the interaction of a TBDT with a TonB protein in the presence of both membranes. By combining molecular dynamics simulations in a membrane model, in vitro and in vivo phenotypic experiments we obtained the comprehensive network of interaction between HasR, a heme/hemophore receptor and its dedicated TonB protein, HasB.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5412 ◽  
Author(s):  
Jesper S. Oeemig ◽  
O.H. Samuli Ollila ◽  
Hideo Iwaï

The TonB protein plays an essential role in the energy transduction system to drive active transport across the outer membrane (OM) using the proton-motive force of the cytoplasmic membrane of Gram-negative bacteria. The C-terminal domain (CTD) of TonB protein is known to interact with the conserved TonB box motif of TonB-dependent OM transporters, which likely induces structural changes in the OM transporters. Several distinct conformations of differently dissected CTDs of Escherichia coli TonB have been previously reported. Here we determined the solution NMR structure of a 96-residue fragment of Pseudomonas aeruginosa TonB (PaTonB-96). The structure shows a monomeric structure with the flexible C-terminal region (residues 338–342), different from the NMR structure of E. coli TonB (EcTonB-137). The extended and flexible C-terminal residues are confirmed by 15N relaxation analysis and molecular dynamics simulation. We created models for the PaTonB-96/TonB box interaction and propose that the internal fluctuations of PaTonB-96 makes it more accessible for the interactions with the TonB box and possibly plays a role in disrupting the plug domain of the TonB-dependent OM transporters.


PLoS ONE ◽  
2013 ◽  
Vol 8 (3) ◽  
pp. e58964 ◽  
Author(s):  
Gisele Cardoso de Amorim ◽  
Ada Prochnicka-Chalufour ◽  
Philippe Delepelaire ◽  
Julien Lefèvre ◽  
Catherine Simenel ◽  
...  
Keyword(s):  

2007 ◽  
Vol 190 (1) ◽  
pp. 21-27 ◽  
Author(s):  
Najla Benevides-Matos ◽  
Cécile Wandersman ◽  
Francis Biville

ABSTRACT Serratia marcescens possesses two functional TonB paralogs, TonBSm and HasB, for energizing TonB-dependent transport receptors (TBDT). Previous work had shown that HasB is specific to heme uptake in the natural host and in Escherichia coli expressing the S. marcescens TBDT receptor HasR, whereas the S. marcescens TonB and E. coli TonB proteins function equally well with various TBDT receptors for heme and siderophores. This has raised the question of the target of this specificity. HasB could be specific either to heme TBDT receptors or only to HasR. To resolve this question, we have cloned in E. coli another S. marcescens heme receptor, HemR, and we show here that this receptor is TonB dependent and does not work with HasB. This demonstrates that HasB is not dedicated to heme TBDT receptors but rather forms a specific pair with HasR. This is the first reported case of a specific TonB protein working with only one TBDT receptor in one given species. We discuss the occurrence, possible molecular mechanisms, and selective advantages of such dedicated TonB paralogs.


BioMetals ◽  
2007 ◽  
Vol 20 (3-4) ◽  
pp. 467-483 ◽  
Author(s):  
Byron C. H. Chu ◽  
R. Sean Peacock ◽  
Hans J. Vogel

2002 ◽  
Vol 46 (2) ◽  
pp. 561-565 ◽  
Author(s):  
Corinne Rouquette-Loughlin ◽  
Igor Stojiljkovic ◽  
Tara Hrobowski ◽  
Jacqueline T. Balthazar ◽  
William M. Shafer

ABSTRACT The MtrC-MtrD-MtrE efflux pump possessed by Neisseria gonorrhoeae is very similar to the MexA-MexB-OprM efflux pump of Pseudomonas aeruginosa. Because the antimicrobial resistance property afforded by the MexA-MexB-OprM efflux pump also requires the TonB protein, we asked whether a similar requirement exists for the gonococcal efflux pump. Unlike earlier studies with P. aeruginosa, we found that constitutive levels of gonococcal resistance to hydrophobic antimicrobial agents (i.e., Triton X-100 [TX-100]) did not require the TonB, ExbB, or ExbD protein. However, inducible levels of TX-100 resistance in gonococci had an absolute requirement for the TonB-ExbB-ExbD system, suggesting that such resistance in gonococci has an energy requirement above and beyond that required for constitutive pump activity.


Sign in / Sign up

Export Citation Format

Share Document