Thermal decomposition of magnesium ammonium phosphate and adsorption properties of its pyrolysis products toward ammonia nitrogen

2015 ◽  
Vol 25 (2) ◽  
pp. 497-503 ◽  
Author(s):  
Yi-qing CHEN ◽  
Jian-jun TANG ◽  
Wen-long LI ◽  
Zhen-hui ZHONG ◽  
Juan YIN
2011 ◽  
Vol 233-235 ◽  
pp. 528-531
Author(s):  
Li Na He ◽  
Hua Ye ◽  
Can Cao ◽  
Ying Fen Li

Large quantities of ammonia-nitrogen (-N) in wastewater is one of the main causes of eutrophication that endanger both natural water bodies and fresh water seriously. Thus, it is necessary to find an economic and feasible method to remove the ammonium-nitrogen in wastewater before they are returned to the environment. Magnesium ammonium phosphate precipitation method is one of the effective technology of wastewater treatment. In this paper, the influence of initial ammonia-nitrogen concentration, pH, temperature and mole ratio of :NH+4 :Mg2+were studied, What is more, the optimum condition of this process was determined. The results indicated that ammonia-nitrogen concentration is decreased from 1434 mg/L to 95.65 mg/L, and the removal rate reached 93.33% at the optimum conditions, which laying a foundation for the following biochemical treatment.


2012 ◽  
Vol 573-574 ◽  
pp. 1096-1100 ◽  
Author(s):  
Lei Zhu ◽  
Zhi Yong Guo ◽  
Xiu Yi Hua ◽  
De Ming Dong ◽  
Da Peng Liang ◽  
...  

This study introduces a method of ammonia nitrogen removal from chlor-alkali industry wastewater by magnesium ammonium phosphate (MAP) precipitation. The effect of pH, reagent ratio and temperature were investigated. The pH was found to be the most significant factor. The optimal ammonia nitrogen removal ratio is about 46% under the condition of pH=10, reagent ratio n(Mg) : n(N) : n(P)=1.2 : 1.0 : 1.0 and temperature=35°C. According to this study, MAP precipitation method has the potential ability to be applied to remove ammonia nitrogen from chlor-alkali chemical industry wastewater.


2012 ◽  
Vol 496 ◽  
pp. 42-45 ◽  
Author(s):  
Hao Wang ◽  
Guan Wen Cheng ◽  
Xiao Wei Song ◽  
Zai Han Xu ◽  
Jin Jie Meng ◽  
...  

Ammonia is one of the most important contaminants affecting the quality of water environment. Magnesium ammonium phosphate (MgNH4PO4·6H2O), which is a slow releasing fertilizer, is one possible way to remove high strength ammonia from the wastewater. The wastewater is collected from the effluent of extraction of rare earth elements factory, the study investigate the influence of pH, magnesium and phosphate dosing molar ratio and reaction time for ammonia removal rate. The results show that: when the pH = 9.2, n (Mg): n (N): n (P) = 2.2:1:2, reaction time t = 20min, ammonia concentration of the wastewater from 4420mg / L down to 1440mg / L , ammonia nitrogen removal rate can reach 67%, the remaining TP = 0.9mg / L; higher Ca2 + concentration will affect the MAP precipitation for removing ammonia, but it help to reduce total phosphorus concentrations of effluent; it is not the longer reaction time the better removal rate, because the MAP-formation will destroy with longer reaction time.


2018 ◽  
Vol 64 (4) ◽  
pp. 36-39
Author(s):  
Katrin Calábková ◽  
Petra Malíková ◽  
Silvie Heviánková ◽  
Michaela Červenková

Abstract Digestate from biogas plants, formed by dewatering anaerobically stabilized sludge, is characteristic of high concentrations of phosphates and ammonia nitrogen suitable for further use. Phosphorus is an element widely used to produce fertilizers, and because of its continually shortening natural supplies, recycling of phosphorus is gaining on significance. Both phosphorus and nitrogen are important elements and their presence affect the quality of water resources. Both elements can contribute to eutrophication. At the same time, both phosphorus and ammonia nitrogen, are important elements for agricultural production, and therefore greater demands are being made on the effort to connect sewage treatment processes and the process of recycling of these nutrients. A suitable product of phosphorus and ammonia nitrogen are phosphates in the form of a structurally-poorly soluble precipitate of magnesium ammonium phosphate (struvite). This form of slowly decomposing fertilizer is distinguished by its fertilizing abilities. Compared to direct use of digestate as a fertilizer, struvite is more stable and can gradually release ammonia nitrogen for a long time without unnecessary losses. In the reported experiments, the precipitation efficiency of the recycling of ammonia nitrogen and phosphorus from the digestate liqour (liquid discharge from digestate) was, at a stoichiometric ratio of Mg2+: NH4+: PO43− (3.2: 1: 0.8) and a stirring time of 15 minutes, 87 % for ammonia nitrogen ions.


2019 ◽  
Vol 142 (3) ◽  
pp. 1303-1314 ◽  
Author(s):  
Lavinia Bianchi ◽  
Kerry Kirwan ◽  
Luca Alibardi ◽  
Marc Pidou ◽  
Stuart R. Coles

AbstractChemical precipitation is a consolidated technique applied in wastewater treatment to remove and recover phosphorous and ammonium that remain in the effluent after the anaerobic digestion treatment. The precipitate is magnesium ammonium phosphate hexahydrate (MgNH4PO4·6H2O), also known as struvite, and it is sold as a slow-release fertiliser. However, the value of struvite is quite low and has a limited market. Furthermore, it precipitates with heavy metals and other impurities that need to be removed to make the fertiliser commercially viable. This study looked at the thermal decomposition of struvite to recover added value products and recycle the magnesium for further precipitation. A kinetic study was carried out to understand the mechanism of decomposition and the formation of the different solid phases, which is fundamental for the design and optimisation of the technology. The thermogravimetric study confirmed that thermal decomposition is possible, but ammonia could not be completely released below 250 °C. The thermal analysis also led to the determination of the energy required for the decomposition, found to be 1.87 kJ g−1, which also includes the evaporation of water and ammonia. The kinetic study through the isoconversional method showed the presence of two major reactions, and the model-fitting approach identified the diffusion model as the best fit for the first reaction. The activation energy of the first reaction found with this method was 0.24 kJ g−1, comparable with the data obtained from the isoconversional method. The two-stage decomposition reactions were proposed, and the final calcination product was confirmed as magnesium pyrophosphate, which could be used in agriculture or dissolved in diluted mineral acids solution to separate the phosphate from the magnesium.


2011 ◽  
Vol 233-235 ◽  
pp. 733-736
Author(s):  
Wei Hua Song ◽  
Jun Yin ◽  
Jian Hui Wang

A lab-scale study was conducted to precipitate the ammonia from high NH3-N concentration wastewater in the form of magnesium ammonium phosphate(MAP) by applying such chemicals such as MgCl2·6H2O and KH2PO4.The influences of pH value, reactive time and removal rate of ammonia nitrogen were tested.The results shows that the feasible pH values of crystallization and precipitation were between 8 and 10. The structure of struvite crystallization was destroyed under high pH value condition that resulted in ammonia nitrogen dissociating from MAP, which reduced the removal rate of ammonia nitrogen. Results also demonstrated that ammonia nitrogen was effectively reduced from initia1981mg/L to final 5 mg/L, which removal efficiency reached 99% with crystallization and precipitation method when the optimal pH, precipitation time mole ratio of Mg2+, NH4+, PO43- were 8.0, 20 min and 1.4∶1∶1.4 respectively.


Sign in / Sign up

Export Citation Format

Share Document