Theoretical and Experimental on Carbon Dioxide Sequestration Degree of Steel Slag

2012 ◽  
Vol 19 (12) ◽  
pp. 29-32 ◽  
Author(s):  
Jian-li Li ◽  
Hui-ning Zhang ◽  
An-jun Xu ◽  
Jian Cui ◽  
Dong-feng He ◽  
...  
Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1580
Author(s):  
Hao Na ◽  
Yajun Wang ◽  
Xi Zhang ◽  
Junguo Li ◽  
Yanan Zeng ◽  
...  

Dicalcium silicate is one of the main mineral phases of steel slag. Ascribed to the characteristics of hydration and carbonation, the application of slag in cement production and carbon dioxide sequestration has been confirmed as feasible. In the current study, the precipitation process of the dicalcium silicate phase in steel slag was discussed. Meanwhile, the study put emphasis on the influence of different crystal forms of dicalcium silicate on the hydration activity and carbonation characteristics of steel slag. It indicates that most of the dicalcium silicate phase in steel slag is the γ phase with the weakest hydration activity. The hydration activity of γ-C2S is improved to a certain extent by means of mechanical, high temperature, and chemical activation. However, the carbonation activity of γ-C2S is about two times higher than that of β-C2S. Direct and indirect carbonation can effectively capture carbon dioxide. This paper also summarizes the research status of the application of steel slag in cement production and carbon dioxide sequestration. Further development of the potential of dicalcium silicate hydration activity and simplifying the carbonation process are important focuses for the future.


Elements ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. 179-184 ◽  
Author(s):  
S. J. Friedmann

Author(s):  
Srikanth Ravipati ◽  
Mirella Simoes Santos ◽  
Ioannis G. Economou ◽  
Amparo Galindo ◽  
George Jackson ◽  
...  

Author(s):  
Raghavendra Ragipani ◽  
Sankar Bhattacharya ◽  
Akkihebbal K. Suresh

Research pertaining to carbon dioxide sequestration via mineral carbonation has gained significant attention, primarily due to the stability of sequestered \ce{CO2} over geological time scales. Use of industry-derived alkaline wastes...


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Bernadette R. Cladek ◽  
S. Michelle Everett ◽  
Marshall T. McDonnell ◽  
Matthew G. Tucker ◽  
David J. Keffer ◽  
...  

AbstractA vast source of methane is found in gas hydrate deposits, which form naturally dispersed throughout ocean sediments and arctic permafrost. Methane may be obtained from hydrates by exchange with hydrocarbon byproduct carbon dioxide. It is imperative for the development of safe methane extraction and carbon dioxide sequestration to understand how methane and carbon dioxide co-occupy the same hydrate structure. Pair distribution functions (PDFs) provide atomic-scale structural insight into intermolecular interactions in methane and carbon dioxide hydrates. We present experimental neutron PDFs of methane, carbon dioxide and mixed methane-carbon dioxide hydrates at 10 K analyzed with complementing classical molecular dynamics simulations and Reverse Monte Carlo fitting. Mixed hydrate, which forms during the exchange process, is more locally disordered than methane or carbon dioxide hydrates. The behavior of mixed gas species cannot be interpolated from properties of pure compounds, and PDF measurements provide important understanding of how the guest composition impacts overall order in the hydrate structure.


Sign in / Sign up

Export Citation Format

Share Document