scholarly journals Hydration Activity and Carbonation Characteristics of Dicalcium Silicate in Steel Slag: A Review

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1580
Author(s):  
Hao Na ◽  
Yajun Wang ◽  
Xi Zhang ◽  
Junguo Li ◽  
Yanan Zeng ◽  
...  

Dicalcium silicate is one of the main mineral phases of steel slag. Ascribed to the characteristics of hydration and carbonation, the application of slag in cement production and carbon dioxide sequestration has been confirmed as feasible. In the current study, the precipitation process of the dicalcium silicate phase in steel slag was discussed. Meanwhile, the study put emphasis on the influence of different crystal forms of dicalcium silicate on the hydration activity and carbonation characteristics of steel slag. It indicates that most of the dicalcium silicate phase in steel slag is the γ phase with the weakest hydration activity. The hydration activity of γ-C2S is improved to a certain extent by means of mechanical, high temperature, and chemical activation. However, the carbonation activity of γ-C2S is about two times higher than that of β-C2S. Direct and indirect carbonation can effectively capture carbon dioxide. This paper also summarizes the research status of the application of steel slag in cement production and carbon dioxide sequestration. Further development of the potential of dicalcium silicate hydration activity and simplifying the carbonation process are important focuses for the future.

2019 ◽  
Vol 1151 ◽  
pp. 17-21
Author(s):  
Theodor Staněk ◽  
Martin Boháč ◽  
Petr Sulovský

In this work, it was found out that dicalcium silicate doped with SO3 shows higher hydraulic activity compared to pure dicalcium silicate. This finding was used to prepare and optimize high-belite cement from SO3 doped clinkers. The belite cement exhibited the same technological parameters, including short-term strengths, as ordinary Portland cement with a high content of tricalcium silicate. The clinker for belite cement is environmentally and economically advantageous. It is possible to burn the clinker at a temperature of 100 °C lower than conventional clinker and with lower consumption of calcium carbonate. In particular, methods of optical and electron microscopy were used for the research.


2002 ◽  
Vol 19 (2) ◽  
pp. 95-101 ◽  
Author(s):  
W. K. O’Connor ◽  
D. C. Dahlin ◽  
G. E. Rush ◽  
C. L. Dahlin ◽  
W. K. Collins

2012 ◽  
Vol 19 (12) ◽  
pp. 29-32 ◽  
Author(s):  
Jian-li Li ◽  
Hui-ning Zhang ◽  
An-jun Xu ◽  
Jian Cui ◽  
Dong-feng He ◽  
...  

Author(s):  
Zarina Itam ◽  
Hafiz Zawawi ◽  
Yuovendra Sivaganese ◽  
Salmia Beddu ◽  
Nur Liyana Mohd Kamal

In recent years, the production of cement has grown globally in a very rapid manner due to the modernization of the world we live in, and after fossil fuels and land-use change, cement production is the third-largest source of anthropogenic emissions of carbon dioxide, CO2. Cement being the primary binding material for concrete and with the prospects for the concrete industry continues to grow so will the emissions of CO2. Hence, a method to reduce the CO2 production while keeping up with the progression of the concrete industry is very crucial in current times. This is where CO2 sequestration comes in. It is a process where CO2 is converted into a mineral which will then be trapped into the concrete forever. Required data to carry out the research between CO2 sequestered concrete and concrete without CO2 have been observed, obtained and tabulated as necessary. These data are then used to compare the concrete samples with one another and also prove the theoretical effects of CO2 exposure to concrete. Hence, experimental results on the compressive strength of the concrete samples for 7, 14 and 28 days has also been tabulated, graphed and further disputed. The objective of this research is mainly to determine the compressive strength of CO2 sequestered concrete in comparison with concrete without CO2 in order to decrease the effects the concrete industry has on the environment. The compressive strength of concrete samples with sequestration of CO2 gas is expected to be higher than of the concrete without CO2.


Elements ◽  
2007 ◽  
Vol 3 (3) ◽  
pp. 179-184 ◽  
Author(s):  
S. J. Friedmann

Author(s):  
Srikanth Ravipati ◽  
Mirella Simoes Santos ◽  
Ioannis G. Economou ◽  
Amparo Galindo ◽  
George Jackson ◽  
...  

Author(s):  
Raghavendra Ragipani ◽  
Sankar Bhattacharya ◽  
Akkihebbal K. Suresh

Research pertaining to carbon dioxide sequestration via mineral carbonation has gained significant attention, primarily due to the stability of sequestered \ce{CO2} over geological time scales. Use of industry-derived alkaline wastes...


2021 ◽  
Vol 13 (4) ◽  
pp. 1866
Author(s):  
Noor Allesya Alis Ramli ◽  
Faradiella Mohd Kusin ◽  
Verma Loretta M. Molahid

Mining waste may contain potential minerals that can act as essential feedstock for long-term carbon sequestration through a mineral carbonation process. This study attempts to identify the mineralogical and chemical composition of iron ore mining waste alongside the effects of particle size, temperature, and pH on carbonation efficiency. The samples were found to be alkaline in nature (pH of 6.9–7.5) and contained small-sized particles of clay and silt, thus indicating their suitability for mineral carbonation reactions. Samples were composed of important silicate minerals needed for the formation of carbonates such as wollastonite, anorthite, diopside, perovskite, johannsenite, and magnesium aluminum silicate, and the Fe-bearing mineral magnetite. The presence of Fe2O3 (39.6–62.9%) and CaO (7.2–15.2%) indicated the potential of the waste to sequester carbon dioxide because these oxides are important divalent cations for mineral carbonation. The use of small-sized mine-waste particles enables the enhancement of carbonation efficiency, i.e., particles of <38 µm showed a greater extent of Fe and Ca carbonation efficiency (between 1.6–6.7%) compared to particles of <63 µm (0.9–5.7%) and 75 µm (0.7–6.0%). Increasing the reaction temperature from 80 °C to 150–200 °C resulted in a higher Fe and Ca carbonation efficiency of some samples between 0.9–5.8% and 0.8–4.0%, respectively. The effect of increasing the pH from 8–12 was notably observed in Fe carbonation efficiency of between 0.7–5.9% (pH 12) compared to 0.6–3.3% (pH 8). Ca carbonation efficiency was moderately observed (0.7–5.5%) as with the increasing pH between 8–10. Therefore, it has been evidenced that mineralogical and chemical composition were of great importance for the mineral carbonation process, and that the effects of particle size, pH, and temperature of iron mining waste were influential in determining carbonation efficiency. Findings would be beneficial for sustaining the mining industry while taking into account the issue of waste production in tackling the global carbon emission concerns.


Sign in / Sign up

Export Citation Format

Share Document